Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-26T23:46:50.507Z Has data issue: false hasContentIssue false

Chemical vapor deposition of aluminum nitride thin films

Published online by Cambridge University Press:  31 January 2011

Roy G. Gordon
Affiliation:
Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
Umar Riaz
Affiliation:
Department of Chemistry, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138
David M. Hoffman
Affiliation:
Department of Chemistry, University of Houston, Houston, Texas 77204
Get access

Abstract

The atmospheric pressure chemical vapor deposition of aluminum nitride coatings from hexakis(dimethylamido)dialuminum, Al2(N(CH3)2)6, and ammonia precursors is reported. The films were characterized by ellipsometry, transmission electron microscopy, x-ray photoelectron spectroscopy, Rutherford backscattering, and forward recoil spectrometry. The films were deposited at 100–500 °C with growth rates up to 1500 Å/min. The films showed good adhesion to silicon, glass, and quartz substrates and were chemically inert. Rutherford backscattering analysis revealed that the N/Al ratio was 1.15 ± 0.05 for films deposited at 100–200 °C and 1.05 ± 0.05 for those deposited at 300–500 °C. Films deposited at 100–200 °C had refractive indexes in the range 1.65–1.80 whereas indexes for films deposited at 300–400 °C were 1.86–2.04. The films were transparent in the visible region. The optical bandgap varied from 5.0 eV for films deposited at 100 °C to 5.77 eV for those deposited at 500 °C. Films deposited at 100–200 °C were amorphous whereas those deposited at 300–500 °C were polycrystalline.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Sheppard, L. M., Ceram. Bull. 69, 1801 (1990).Google Scholar
2.Neuberger, M., Handbook of Electronic Materials (IFI/Plenum, New York, 1971), Vol. 2, pp. 1820.CrossRefGoogle Scholar
3.Yin, W. M., Stofko, E. J., Zanzucchi, P. J., Ettenberg, M., and Gilbert, S. L., J. Appl. Phys. 44, 292 (1973).Google Scholar
4.Slack, G. A., J. Phys. Chem. Solids 34, 321 (1973).CrossRefGoogle Scholar
5.Fathimulla, A. and Lakhani, A. A., J. Appl. Phys. 54, 4586 (1983).CrossRefGoogle Scholar
6.Interrante, L. V., Lee, W., McConnell, M., Lewis, N., and Hall, E., J. Electrochem. Soc. 136, 472 (1989).CrossRefGoogle Scholar
7.Shiosaki, T., Yamamoto, T., Oda, T., and Kawabata, A., Appl. Phys. Lett. 36, 643 (1980).CrossRefGoogle Scholar
8.Yoshida, S., Misawa, S., Fujii, Y., Takada, S., Hayakawa, H., Gonda, S., and Itoh, A., J. Vac. Sci. Technol. 16, 990 (1979).CrossRefGoogle Scholar
9.Chu, T. L. and Kelm, R. W., Jr., J. Electrochem. Soc. 122, 995 (1975).CrossRefGoogle Scholar
10.Pauleau, Y., Bouteville, A., Hantzpergue, J. J., Remy, J. C., and Cachard, A., J. Electrochem. Soc. 129, 1045 (1982).CrossRefGoogle Scholar
11.Manasevit, H. M., Erdmann, F. M., and Simpson, W. I., J. Electrochem. Soc. 118, 1864 (1971).CrossRefGoogle Scholar
12.Gaskill, D. K., Bottka, N., and Lin, M. C., J. Cryst. Growth 77, 418 (1986).CrossRefGoogle Scholar
13.Interrante, L. V., Carpenter, L. E., Whitmarsh, C., and Lee, W., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), p. 359.Google Scholar
14.Boyd, D. C., Haasch, R. T., Mantell, D. R., Schulze, R. K., Evans, J. F., and Gladfeltei, W. L., Chem. Mater. 1, 119 (1989).CrossRefGoogle Scholar
15.Shuskus, A. J., Reeder, T. M., and Paradis, E. L., Appl. Phys. Lett. 24, 155 (1974).CrossRefGoogle Scholar
16.Fix, R. M., Gordon, R. G., and Hoffman, D. M., in Chemical Vapor Deposition of Refractory Metals and Ceramics, edited by Besmann, T. M. and Gallois, B. M. (Mater. Res. Soc. Symp. Proc. 168, Pittsburgh, PA, 1990), p. 357.Google Scholar
17.Fix, R. M., Hoffman, D. M., and Gordon, R. G., J. Am. Chem. Soc. 112, 7833 (1990).CrossRefGoogle Scholar
18.Fix, R., Ph.D. Dissertation, Harvard University, 1991.Google Scholar
19.Gordon, R. G., Hoffman, D. M., and Riaz, U., Chem. Mater. 2, 480 (1990).CrossRefGoogle Scholar
20.Gordon, R. G., Hoffman, D. M., and Riaz, U., in Chemical Perspectives of Microelectronic Materials II, edited by Interrante, L. V., Jensen, K. F., Dubois, L. H., and Gross, M. E. (Mater. Res. Soc. Symp. Proc. 204, Pittsburgh, PAM, 1991), p. 95.Google Scholar
21.Gordon, R. G., Hoffman, D. M., and Riaz, U., submitted for publication.Google Scholar
22. Preliminary studies were communicated earlier: Gordon, R. G., Hoffman, D. M., and Riaz, U., J. Mater. Res. 6, 5 (1991).CrossRefGoogle Scholar
23.Takahashi, Y., Yamashita, K., Motojima, S., and Sugiyama, K., Surf. Sci. 86, 238 (1979).CrossRefGoogle Scholar
24.Waggoner, K. M., Olmstead, M. M., and Power, P. P., Polyhedron 9 (2/3), 257 (1990).CrossRefGoogle Scholar
25.Chu, W-K., Mayer, J. W., and Nicolet, M-A., Backscattering Spectrometry (Academic Press, New York, 1978).CrossRefGoogle Scholar
26.Powell, C. J. and Seah, M. P., J. Vac. Sci. Technol. A8, 735 (1990).CrossRefGoogle Scholar
27. ASTM Card No. 8–262, Powder Diffraction File, W. F. McClune, editor-in-chief; JCPDS International Centre for Diffraction Data, Swarthmore, PA.Google Scholar
28.Ohuchi, F. S. and French, R. H., J. Vac. Sci. Technol. A6, 1695 (1988).CrossRefGoogle Scholar
29.Peercy, P. S. and Stein, H. J., Proc. Symp. on Silicon Nitride Thin Films, edited by Kapoor, V. J. and Stein, H. J. (Electrochemical Society, Inc., Pennington, NJ, 1983), Vol. 83–8, p. 3.Google Scholar
30.Paciorek, K. J. L., Nakahara, J. H., Hoferkamp, L. A., George, C., Flippen-Anderson, J. L., Gilardi, R., and Schmidt, W. R., Chem. Mater. 3, 82 (1991).CrossRefGoogle Scholar