Hostname: page-component-797576ffbb-42xl8 Total loading time: 0 Render date: 2023-12-11T06:27:09.654Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "useRatesEcommerce": true } hasContentIssue false

Substrate and temperature effects in lead zirconate titanate films produced by facing targets sputtering

Published online by Cambridge University Press:  31 January 2011

R.A. Roy
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
K.F. Etzold
Affiliation:
IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

The growth of ferroelectric lead zirconate titanate (PZT) films by rf-sputtering using a facing targets geometry is described. This study focuses on the influence of the substrate on PZT thin film composition, structure, and electrical properties. The deposition temperatures ranged from room temperature to 700 °C and the process gas was a mixture of argon and oxygen. Effects of deposition conditions and post-deposition annealing on film composition, microstructure, and properties were evaluated using Rutherford backscattering spectroscopy (RBS), x-ray diffraction, electron microscopy, and measurements of the permittivity and polarization. The microstructure, composition, and permittivity of the films were found to be strongly dependent on the substrate temperature and on the preparation history of the films.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Shintani, Y., Sato, K., Sakamoto, M., Fukuda, H., and Tada, O., Jpn. J. Appl. Phys. 17, 573 (1978).Google Scholar
2.Ishida, M., Tsuji, S., Kimura, K., Matsunami, H., and Tanaka, T., J. Cryst. Growth 45, 393 (1978).Google Scholar
3.Matsui, Y., Okuyama, M., Fujita, N., and Hamakawa, Y., J. Appl. Phys. 52, 5107 (1981).Google Scholar
4.Mansingh, A., Sreenivas, K., and Rao, T. S., in Proc. 6th Symp. Appl. Ferroelectricity (IEEE, New York, 1986), p. 576.Google Scholar
5.Adachi, H., Kawaguchi, T., Kitabatake, M., and Wasa, K., Jpn. J. Appl. Phys. 22 S22 (2), 11 (1983).Google Scholar
6.Krupanidhi, S. B., Maffei, N., Sayer, M., and El-Assal, K., J. Appl. Phys. 54, 6601 (1983).Google Scholar
7.Iijima, K., Tomita, Y., Takayama, R., and Ueda, I., J. Appl. Phys. 60, 361 (1986).Google Scholar
8.Shohata, N., Matsubara, S., Miyasaka, Y., and Yonezawa, M., in Proc. 6th Symp. Appl. Ferroelectricity (IEEE, New York, 1986), p. 580.Google Scholar
9.Takayama, R. and Tomita, Y., J. Appl. Phys. 65, 1666 (1989).Google Scholar
10.Okuyama, M., Seto, H., Kojima, M., Matsui, Y., and Hamakawa, H., Jpn. J. Appl. Phys. 21 (1), 225 (1982).Google Scholar
11.Okuyama, M. and Hamakawa, Y., Ferroelectrics 63, 243 (1985).Google Scholar
12.Sreenivas, K., Sayer, M., Baar, D. J., and Nishioka, M., Appl. Phys. Lett. 52, 709 (1988).Google Scholar
13.Castellano, R. N. and Feinstein, L. G., J. Appl. Phys. 50, 4406 (1979).Google Scholar
14.Nawathey, R., Vispute, R. D., Chaudhari, S. M., Kanetkar, S. M., and Ogale, S. B., Solid State Commun. 71, 9 (1989).Google Scholar
15.Davis, G. M. and Gower, M. C., Appl. Phys. Lett. 55, 112 (1989).Google Scholar
16.Li, X. X., Linker, G., Meyer, O., Nold, E., Orbst, B., Ratzel, F., Smithey, R., Strehrlau, B., Weschenfelder, F., and Geerk, J., Z. Phys. B 74, 13 (1989).Google Scholar
17.Lee, W. Y., Salem, J., Lee, V., Reuttner, C. T., Gorman, G., Savoy, R., Deline, V., and Huang, T. C., Thin Solid Films 166, 181 (1988).Google Scholar
18.Roy, R. A., Etzold, K. F., and Cuomo, J. J., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 77.Google Scholar
19.Etzold, K. F., Roy, R. A., Saenger, K. L., and Cuomo, J. J., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 297.Google Scholar
20.Ruddlesden, S. N. and Popper, P., Acta Cryst. 11, 54 (1958), JCPDS# 11–663.Google Scholar
21.Etzold, K. F., Roy, R. A., Saenger, K. L., Lee, J. W., and Cuomo, J. J., Am. Ceram. Soc. Proc. (in press).Google Scholar
22.Dana, S. S., Etzold, K. F., and Clabes, J. G., J. Appl. Phys. 69, 4398 (1991).Google Scholar
23.Francis, L. F. and Payne, D. A., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 173.Google Scholar
24.Matsubara, S., Yamamichi, S., Yamaguchi, H., and Miyazaki, Y., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), p. 243.Google Scholar