Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-23T02:13:46.077Z Has data issue: false hasContentIssue false

Powder characteristics and sintering behavior of Ag-doped YBa2Cu3O7−x produced by aerosol decomposition

Published online by Cambridge University Press:  31 January 2011

Timothy L. Ward
Affiliation:
Center for Micro-Engineered Ceramics, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131
Toivo T. Kodas*
Affiliation:
Center for Micro-Engineered Ceramics, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131
Altaf H. Carim*
Affiliation:
Center for Micro-Engineered Ceramics, Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, New Mexico 87131
Donald M. Kroeger
Affiliation:
Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831
Huey Hsu
Affiliation:
Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831
*
a)Author to whom correspondence should be addressed.
b)Present address: Ceramic Science and Engineering Program, Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802.
Get access

Abstract

YBa2Cu3O7−x (1-2-3) powders and 1-2-3 powders doped with 14 wt. % Ag (AgYBa2Cu3O7−x) were produced using aerosol decomposition of nitrate solutions. Powder produced at T > 900 °C consisted of submicron particles and had Tc ≍ 92 K in magnetic susceptibility measurements. As-produced Ag-doped powder was a composite of nearly phase-pure 1-2-3 and crystalline Ag (by x-ray diffraction) for reactor temperatures between 900 °C and 950 °C, whereas powder produced at T≥ 970 °C contained significant amounts of Y2BaCuO5 which were not found in 1-2-3 synthesis in the absence of Ag. This implied that the melting of Ag (∼960 °C) or the Ag-O eutectic (∼940 °C) promoted decomposition of 1-2-3 during powder synthesis. Dilatometry showed that 1-2-3 and Ag/1-2-3 powders densified rapidly between 800 °C and 875 °C, achieving nearly 90% of theoretical density after heating to 875 °C at 5 °C/min in air. Pellets of the Ag-doped powder were also sintered for 2-60 h at 895 °C in air. Scanning electron and optical microscopy revealed that Ag grains remained fine and uniformly distributed, varying in size from ∼1 μm after 2 h to 3–7 μm after 60 h, while 1-2-3 grains became plate-shaped with thicknesses of 1–5 μm and lengths of 10–30 μm after 60 h. Thus, the use of aerosol Ag /1-2-3 powders allows the use of lower processing temperatures and shorter times to produce dense ceramics with smaller Ag and 1-2-3 grain sizes than can be obtained using solid-state reaction routes.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Pavuna, D., Berger, H., Affronte, M., Van der Maas, J., Capponi, J. J., Guillot, M., Lejay, P., and Tholence, J. L., Solid State Commun. 68 (6), 535 (1988).CrossRefGoogle Scholar
2.Plechacek, V., Landa, V., Blazek, Z., Sneidr, J., Trejbalova, Z., and Cermak, M., Physica C 153–155, 878 (1988).CrossRefGoogle Scholar
3.Dwir, B., Affronte, M., and Pavuna, D., Appl. Phys. Lett. 55 (4), 399 (1989).CrossRefGoogle Scholar
4.Singh, J.P., Leu, H.J., Poeppel, R. B., Van Voorhees, E., Goudey, G.T., Winsley, K., and Shi, D., J. Appl. Phys. 66 (7), 3154 (1989).CrossRefGoogle Scholar
5.Nishio, T., Itoh, Y., Ogasawara, F., Suganuma, M., Yamada, Y., and Mizutani, U., J. Mater. Sci. 24, 3228 (1989).CrossRefGoogle Scholar
6.Prasad, R., Soni, N. C., Mohan, A., Khera, S. K., Nair, K. U., Gupta, C. K., Tomy, C.V., and Malik, S.K.,Mater. Lett. 7 (1–2), 9 (1988).CrossRefGoogle Scholar
7.Hikichi, Y., Kato, M., Suzuki, S., Nomura, T., and Miyamoto, M., Jpn. J. Appl. Phys. 29 (9), L1615 (1990).Google Scholar
8.Lin, J.J., Chen, T-M., Yao, Y.D., Chen, J.W., and Gou, Y. S., Jpn. J. Appl. Phys. 29 (3), 497 (1990).CrossRefGoogle Scholar
9.Imanaka, N., Saito, F., Imai, H., and Adachi, G-y., Jpn. J. Appl. Phys. Lett. 28 (4), L580 (1989).CrossRefGoogle Scholar
10.Kozlowski, G., Maartense, I., Spyker, R., Leese, R., and Oberly, C. E., Physica C 173 195 (1991).CrossRefGoogle Scholar
11.Routbort, J.L., Goretta, K. C., and Singh, J.P., in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing edited by Christen, D., Narayan, J., and Schneemeyer, L. (Mater. Res. Soc. Symp. Proc. 169, Pittsburgh, PA, 1990), p. 1247.Google Scholar
12.Ryelandt, L., Cassart, M., Vandenbosch, A., Delannay, F., and Issi, J-P., in High-Temperature Superconductors: Fundamental Properties and Novel Materials Processing edited by Christen, D, Narayan, J., and Schneemeyer, L. (Mater. Res. Soc. Symp. Proc. 169 Pittsburgh, PA, 1990), p. 1243.Google Scholar
13.Peterson, G. G., Weinberger, B. R., Lynds, L., and Krasinski, H.A., J. Mater. Res. 3, 605 (1988).CrossRefGoogle Scholar
14.Ganapathi, L., Kumar, A., and Narayan, J., J. Appl. Phys. 66 (12), 5935 (1989).CrossRefGoogle Scholar
15.Weinberger, B.R., Lynds, L., Potrepka, D.M., Snow, D. B., Burila, C.T., Eaton, H.E., Cipolli, R., Tan, Z., and Budnick, I., Physica C 161 91 (1989).CrossRefGoogle Scholar
16.Tiefel, T. H., Jin, S., Sherwood, R. C., Davis, M. E., Kammlott, G. W, Gallagher, P.K., Johnson, D.W., Jr., Fastnacht, R.A., and Rhodes, W.W., Mater. Lett. 7 (11), 363 (1989).CrossRefGoogle Scholar
17.Matsumoto, Y., Hombo, J., Yamaguchi, Y., Nishida, M., and Chiba, A., Appl. Phys. Lett. 56 (16), 1585 (1990).CrossRefGoogle Scholar
18.Tsuchida, K., Miura, Y., Hiroyuki, T., and Kato, A., J. Less-Common Metals 146 L19 (1989).CrossRefGoogle Scholar
19.Barba, M.F., Ortega, P., Saiz, E., and J.S. Moya, Mater. Lett. 10, 149 (1990).CrossRefGoogle Scholar
20.Loehman, R. E., Tomsia, A. P., Pask, J. A., and Carim, A. H., Physica C 170, 1 (1990).CrossRefGoogle Scholar
21.Hojaji, H., Barkatt, A., and Hein, R., Mater. Res. Bull. XXIII 869 (1988).CrossRefGoogle Scholar
22.Blendell, J.E., Chiang, C. K., Cranmer, D.C., Freiman, S.W., Fuller, E. R., Jr., Drescher-Krasicka, E., Johnson, W. L., Ledbetter, H. M., Bennett, L. H., Swartzendruber, L. J., Marinenko, R. B., Myklebust, R. L., Bright, D. S., and Newbury, D. E., in Chemistry of High Temperature Superconductors, edited by Nelson, D. L., Whittingham, M. S., and George, T. F. (American Chemical Society, Washington, DC, 1987), p. 240.Google Scholar
23.McCallum, R.W., Verhoeven, J.D., and Bevolo, A.J., in High Temperature Superconductivity edited by Metzger, R. N. (Gordon and Breach, New York, 1989), p. 245.Google Scholar
24.Chu, C.T. and Dunn, B., J. Mater. Res. 5, 1819 (1990).CrossRefGoogle Scholar
25.Shaw, T. M., Shinde, S. L., Dimos, D., Cook, R. F., Duncombe, P. R., and Kroll, C., J. Mater. Res. 4, 248 (1989).CrossRefGoogle Scholar
26.Kingery, W. D., Bowen, H. K., and Uhlmann, D. R., Introduction to Ceramics (John Wiley and Sons, New York, 1976).Google Scholar
27.Clarke, D. R., Shaw, T., and Dimos, D., J. Am. Ceram. Soc. 72 (7), 1103 (1989).CrossRefGoogle Scholar
27.Kodas, T. T., Adv. Mater. 1 (6), 180 (1989).CrossRefGoogle Scholar
29.Chadda, S., Ward, T.L., Kodas, T.T., Carim, A.H., Ott, K., and Kroeger, D., J. Aerosol Sci. 22 (5), 601 (1991).CrossRefGoogle Scholar
30.Kodas, T., Datye, A., Lee, V., and Engler, E., J. Appl. Phys. 65 (5), 2149 (1989).CrossRefGoogle Scholar
31.Carim, A.H., Doherty, P., and Kodas, T.T., in Superconductivity and Ceramic Superconductors, edited by Nair, K. M. and Geiss, E. A. (First International Ceramic Science and Technology Congress, Anaheim, CA, October 31-November 3, 1989) (American Chemical Society, Columbus, OH, 1990), p. 349.Google Scholar
32.Carim, A. H., Doherty, P., Kodas, T. T., and Ott, K., Mater. Lett. 8 (9), 335 (1989).CrossRefGoogle Scholar
33.Odier, P., Dubois, B., Gervais, M., and Douy, A., Mater. Res. Bull. XXIV, 11 (1989).CrossRefGoogle Scholar
34.Leary, K.J., Jacobson, H.W., Askew, T.R., and Flippen, R.B., J. Am. Ceram. Soc. 73 (4), 904 (1990).CrossRefGoogle Scholar
35.Aselage, T. and Keefer, K., J. Mater. Res. 3, 1279 (1988).CrossRefGoogle Scholar
36.Lay, K.W. and Renlund, G. M., J. Am. Ceram. Soc. 73 (5), 1208 (1990).CrossRefGoogle Scholar
37.Wong-Ng, W., McMurdie, H.F., Paretzkin, B., Zhang, Y., Davis, K.L., Hubbard, C. R., Dragoo, A. L., and Stewart, J. M., Powder Diffraction 2 (3), 192 (1987).Google Scholar
39.Specht, E. D., Sparks, C. J., Dhere, A. G., Brynestad, J., Cavin, O. B., Kroeger, D. M., and Oye, H.A., Phys. Rev. B 37 (13), 7426 (1988).CrossRefGoogle Scholar
39.Krstic, V. V. and Nicholson, P. S., J. Am. Ceram. Soc. 64 (9), 499 (1981).CrossRefGoogle Scholar
40.Hasselman, D. P. H. and Fulrath, R. M., J. Am. Ceram. Soc. 49 (2), 68 (1966).CrossRefGoogle Scholar
41.Lee, S.Y., Ko, J.W., Kim, H.D., and Chung, H.S., Jpn. J. Appl. Phys. 30 (1), 43 (1991).CrossRefGoogle Scholar