Hostname: page-component-6b989bf9dc-476zt Total loading time: 0 Render date: 2024-04-13T04:51:41.259Z Has data issue: false hasContentIssue false

Effective Sintering Aids for Low-temperature Sintering of AlN Ceramics

Published online by Cambridge University Press:  31 January 2011

Koji Watari
Affiliation:
National Industrial Research Institute of Nagoya, Hirate-cho, Kita-ku, Nagoya 462 Japan
Hae J. Hwang
Affiliation:
National Industrial Research Institute of Nagoya, Hirate-cho, Kita-ku, Nagoya 462 Japan
Motohiro Toriyama
Affiliation:
National Industrial Research Institute of Nagoya, Hirate-cho, Kita-ku, Nagoya 462 Japan
Shuzo Kanzaki
Affiliation:
National Industrial Research Institute of Nagoya, Hirate-cho, Kita-ku, Nagoya 462 Japan
Get access

Abstract

A disappearing sintering aid was used to promote densification during the initial and middle stages of sintering and to be removed in gaseous form from the specimens during the final stage of sintering. From thermodynamic consideration such as assessment of Gibbs free energy change of formation of Al2O3 compounds including metal-oxide and evaluation of the vapor pressure of metal-oxide, Li2O is expected to become a disappearing sintering aid for AlN sintering. Doping with Li2O resulted in densification of AlN ceramics with Y2O3 and CaO additives by sintering at a firing temperature of 1600 °C. The amount of Li2O in the specimens decreased by volatilization at temperatures higher than 1300 °C, and its amount was at a level of several ppm after firing at 1600 °C for 6 h. Low-temperature densification of AlN specimens by addition of Li2O also caused the improvement of thermal conductivity and mechanical strength of sintered specimens. Present results indicate that a Li2O addition is effective for AlN sintering. Furthermore, LiYO2 was also used as a new sintering aid instead of Li2O and Y2O3, and the results of thermal conductivity and mechanical strength are shown.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lange, F. F., J. Am. Ceram. Soc. 57, 84 (1974).CrossRefGoogle Scholar
2.Tsai, R. L. and Raj, R., J. Am. Ceram. Soc. 63, 513 (1980).CrossRefGoogle Scholar
3.Jang, S-A. and Choi, G. M., J. Am. Ceram. Soc. 76, 957 (1993).CrossRefGoogle Scholar
4.Umebayashi, U., Ceramics (Bull. Ceram. Soc. Jpn.) 25, 117 (1990).Google Scholar
5.Watari, K., Yasuoka, M., Valecillos, M. C., and Kanzaki, S., J. Euro. Ceram. Soc. 15, 173 (1995).CrossRefGoogle Scholar
6.Watari, K., Sakaguchi, S., Kanzaki, S., Hamasaki, T., and Ishizaki, K., J. Mater. Res. 9, 2741 (1994).CrossRefGoogle Scholar
7.Slack, G. A., Tanzilli, R. A., Pohl, R. O., and Vandersande, J. W., J. Phys. Chem. Solids 48, 641 (1987).CrossRefGoogle Scholar
8.Werdecker, W. and Aldinger, F., IEE, Trans. Compound., Hybrids, Manuf. Technol. CHMT–7, 399 (1984).CrossRefGoogle Scholar
9.Watari, K., Ishizaki, K., and Fujikawa, T., J. Mater. Sci. 27, 2627 (1992).CrossRefGoogle Scholar
10.Watari, K., Ishizaki, K., and Tsuchiya, F., J. Mater. Sci. 28, 3709 (1993).CrossRefGoogle Scholar
11.Komeya, K., Inoue, H., and Tsuge, A., Yogyo-Kyokai-Shi 89, 58 (1981).Google Scholar
12.Shinozaki, K. and Tsuge, A., Ceramics (Bull. Ceram. Soc. Jpn.) 21, 1130 (1986).Google Scholar
13.Virkar, A. F., Jackson, T. B., and Cutler, R. A., J. Am. Ceram. Soc. 72, 2031 (1989).CrossRefGoogle Scholar
14.Watari, K., Kawamoto, M., and Ishizaki, K., J. Mater. Sci. 26, 4724 (1991).CrossRefGoogle Scholar
15.Komeya, K., Tsuge, A., Inoue, H., and Ohta, H., J. Mater. Sci. Lett. 1, 325 (1982).CrossRefGoogle Scholar
16.Kuramoto, N., Taniguchi, H., Numata, Y., and Aso, I., Yogyo-Kyokai-Shi 93, 41 (1985).CrossRefGoogle Scholar
17.Arinaga, S., Shinozaki, K., and Mizutani, N., in Proc. of Annual Meeting of the Ceramics Society of Japan (Ceramics Society of Japan, Nagoya, Japan, 1994), p. 349.Google Scholar
18.Watari, K., Brito, M. E., Yasuoka, M., Valecillos, M. C., and Kanzaki, S., J. Ceram. Soc. Jpn. 103, 891 (1995).CrossRefGoogle Scholar
19.Li, F. G., Ohasaki, K., Uda, M., and Chiba, A., J. Jpn. Inst. Met. 60, 128 (1996).CrossRefGoogle Scholar
20.Troczynski, T. B. and Nicholson, P. S., J. Am. Ceram. Soc. 72, 1488 (1989).CrossRefGoogle Scholar
21.Uchiyama, I. and Terao, K., in Proc. of Annual Meeting of the Ceramics Society of Japan (Ceramics Society of Japan, Tokyo, Japan, 1993), p. 5.Google Scholar
22.Jarrige, J., Bouzouita, K., Doradox, C., and Billy, M., J. Eur. Ceram. Soc. 12, 279 (1993).CrossRefGoogle Scholar
23.Chiao, Y-H. and Copus, K. A., in Proc. of the 1993 Int. Symp. on Microelectronics (Yokohama, Japan), p. 407.Google Scholar
24.Yasumoto, T., Monma, J., Asai, H., and Iwase, N., in Proc. of Annual Meeting of the Ceramics Society of Japan (Ceramics Society of Japan, Tokyo, Japan, 1995), p. 521.Google Scholar
25.Watari, K., Valecillos, M. C., Brito, M. E., Toriyama, M., and Kanzaki, S., J. Am. Ceram. Soc. 76, 3103 (1996).CrossRefGoogle Scholar
26.Watari, K., Hwang, H. J., Toriyama, M., and Kanzaki, S., J. Am. Ceram. Soc. 79, 1979 (1996).CrossRefGoogle Scholar
27.Stull, D. R. and Prophet, H., JANAF Thermochemical Tables, 2nd ed., Nat. Stand. Ref. Data Ser. Nat. Bur. Stand. (1971).CrossRefGoogle Scholar
28.Chase, M. W., Davis, C. A., Downney, J. R., Frurip, D. J., McDonald, R. A., and Syverud, A.N., Phys, J.. Chem. Reference Data, 14, Supplement No. 1 (1985).Google Scholar
29. Malt 2, Materials-oriented little Thermodynamic Database for Personal Computer, Nihon Netu Sokutei Galtukai, Tokyo, Japan.Google Scholar
30.Watari, K. and Nakamura, K., unpublished.Google Scholar
31.Nurse, R. W., Welch, J. H., and Majumdar, A. J., Trans. Brit. Ceram. Soc. 64, 416 (1965).Google Scholar
32.Toropov, N.A. and Galakhov, F.Y., Doklady Akad. Nauk S.S.S.R. 82, 70 (1952).Google Scholar
33.Yagi, T., Shinozaki, K., Ishizawa, N., Mizutani, N., and Kato, K., J. Am. Ceram. Soc. 71, C334 (1988).CrossRefGoogle Scholar
34.Baranda, P. S., Knudsen, A. K., and Ruh, E., J. Am. Ceram. Soc. 76, 1761 (1993).CrossRefGoogle Scholar
35.Samsonov, G. V., Fiziko-Kimicheskie Svojstva Okislov (Metallurgiya, Moskva, 1969).Google Scholar
36.Nakane, K., Uwamino, Y., Morikawa, H., Tsuge, A., Iida, Y., and Ishizuka, T., Bunseki Kagaku 44, 319 (1995).CrossRefGoogle Scholar
37.Watari, K., Seki, Y., and Ishizaki, K., J. Ceram. Soc. Jpn. 97, 174 (1989).CrossRefGoogle Scholar
38.Okamoto, M., Arakawa, H., Oohashi, M., and Ogihara, S., J. Ceram. Soc. Jpn. 97, 1478 (1989).CrossRefGoogle Scholar