Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-6pznq Total loading time: 0.326 Render date: 2021-03-07T21:38:18.657Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Characterization and Optical Investigation of Diamondlike Carbon Prepared by Electron Cyclotron Resonance Plasma

Published online by Cambridge University Press:  31 January 2011

Xiao-Ming He
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
S-T. Lee
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
I. Bello
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
A. C. Cheung
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
W. Z. Li
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
D. S. Chiu
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
Y. W. Lam
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
C. S. Lee
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
K. M. Leung
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
X. T. Zhou
Affiliation:
Department of Physics and Materials Science, City University of Hong Kong, Hong Kong
Get access

Abstract

Diamondlike carbon (DLC) films have been prepared on radio-frequency (rf) biased substrates maintained at low temperature (∼60 °C) using electron cyclotron resonance CH4 –Ar plasma. The structures of the resultant films were characterized by Fourier transform infrared (FTIR), Raman, and ultraviolet/visible (UV/VIS) spectrometry. The studies revealed that the deposited structures were DLC films with sp3/sp2 bond hybridization, extremely high hardness (>3000 kgf/mm2), and high electrical resistivity (up to 1014 Ω cm). The DLC films deposited on colorless (transparent) polymer plastics were examined to determine visible light transparencies and optical bandgaps. The results indicate that electron cyclotron resonance (ECR) plasma processing with low negative rf bias, low deposition temperature, and suitable CH4/Ar gas composition can form optically visible light transparent and hard protective DLC films on polymer plastic surfaces.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below.

References

1.Tsai, H. and Bogy, D., J. Vac. Sci. Technol. A 5, 3287 (1987).CrossRefGoogle Scholar
2.He, X., Li, W., and Li, H., J. Vac. Sci. Technol. A 14 (4), 2039 (1996).CrossRefGoogle Scholar
3.Ono, A., Baba, T., Funamoto, H., and Nishikawa, A., Jpn. J. Appl. Phys. 25, L808 (1986).CrossRefGoogle Scholar
4.Dischler, B., Bubenzer, A., and Koidl, P., Appl. Phys. Lett. 42, 636638 (1983).CrossRefGoogle Scholar
5.Kimock, F. M. and Knapp, B. J., Surf. Coat. Technol. 56, 273 (1993).CrossRefGoogle Scholar
6.Vora, H. and Moravec, T. J., J. Appl. Phys. 52, 6151 (1981).CrossRefGoogle Scholar
7.Vandentop, G. J., Kawasaki, M., Nix, R. M., Brown, I. G., Salmeron, M., and Somorjai, G.A., Phys. Rev. B 41, 3200 (1990).CrossRefGoogle Scholar
8.Weissmantel, C., Bewilogua, K., Schurer, C., Breuer, K., and Zscheile, H., Thin Solid Films 61, L1 (1979).CrossRefGoogle Scholar
9.He, X., Li, W., and Li, H., J. Vac. Sci. Technol. A 11 (6), 2964 (1993).CrossRefGoogle Scholar
10.Savvides, N., J. Appl. Phys. 59, 4133 (1986).CrossRefGoogle Scholar
11.Andry, P. S., Pastel, P. W., and Varhue, W. J., J. Mater. Res. 11, 221 (1996).CrossRefGoogle Scholar
12.Nagai, I., Ishitani, A., Kuroda, H., Yoshikawa, M., and Nagai, N., J. Appl. Phys. 67 (6), 2890 (1990).CrossRefGoogle Scholar
13.Kuo, S. C., Kunhardt, E. E., and Srivatsa, A.R., Appl. Phys. Lett. 59 (20), 2532 (1991).CrossRefGoogle Scholar
14.Park, K. C., Moon, J. H., Jang, J., and Oh, M. H., Appl. Phys. Lett. 68 (25), 3594 (1996).CrossRefGoogle Scholar
15.Pastel, P. W. and Varhue, W. J., J. Vac. Sci. Technol. A 9 (3), 1129 (1991).CrossRefGoogle Scholar
16.Dusek, V., Vanecek, M., Siroky, P., and Vorlicek, V., Diamond and Related Materials 2, 397 (1993).CrossRefGoogle Scholar
17.Maruyama, K., Inoun, T., Yamamoto, M., Morinaga, T., Saitoh, H., and Kamata, K., J. Mater. Sci. Lett. 13, 1793 (1994).CrossRefGoogle Scholar
18.Kamata, K., Inoue, T., Sugai, K.I., Asitoh, H., and Maruyama, K., J. Appl. Phys. 78 (2), 1394 (1995).CrossRefGoogle Scholar
19.Angus, J. C. and Hayman, C.C., Science 241, 913 (1988).CrossRefGoogle Scholar
20.McKenzie, D.R., Botten, L. C., and Mc, R. C.Phedran, Phys. Rev. Lett. 51, 280 (1983).CrossRefGoogle Scholar
21.Mutsukura, N., Inoue, S., and Machi, Y., J. Appl. Phys. 71, 43 (1992).CrossRefGoogle Scholar
22.Silva, S.R. P., Amaratunga, G. A. J., and Constantinou, C. P., J. Appl. Phys. 72 (3), 1149 (1992).CrossRefGoogle Scholar
23.Rossi, F., André, B., Veen, A. V., Mijnarends, P. E., Schut, H., Labohm, F., Dunlop, H., Delplancke, M.P., and Hubbard, K., J. Mater. Res. 9, 2440 (1994).CrossRefGoogle Scholar
24.Beeman, D., Silverman, J., Lynds, R., and Anderson, M. R., Phys. Rev. B 30, 870 (1984).CrossRefGoogle Scholar
25.Richter, A., Scheibe, H-J., Pompe, W., Brzezinka, K-W., and Muhling, I., J. Non-Cryst. Solids 88, 131 (1986).CrossRefGoogle Scholar
26.Palshin, V., Meletis, E. I., Ves, S., and Logothetidis, S., Thin Solid Films 270, 165 (1995).CrossRefGoogle Scholar
27.Kaukonen, H-P. and Nieminen, R. M., Phys. Rev. Lett. 68, 620 (1992).CrossRefGoogle Scholar
28.Tamor, M. A. and Wu, C. H., J. Appl. Phys. 67, 1007 (1990).CrossRefGoogle Scholar
29.Lifshitz, Y., Kasi, S. R., and Rabalais, J. W., Phys. Rev. Lett. 62 (11), 1290 (1989).CrossRefGoogle Scholar
30.Xu, Shi, Tay, B.K., Tan, H. S., Zhong, Li, Tu, Y.Q., Silva, S. R. P., and Milne, W. I., J. Appl. Phys. 79 (9), 7234 (1996).CrossRefGoogle Scholar
31.Zhang, W. and Catherine, Y., Surf. Coat. Technol. 47, 69 (1991).CrossRefGoogle Scholar
32.Silva, S.R. P., Robertson, J., Rusli, , Amaratunga, G.A. J., and Schwan, J., Philos. Mag. B 74, 369 (1996).CrossRefGoogle Scholar
33.Robertson, J., Diamond Relat. Mater. 1, 397 (1992).CrossRefGoogle Scholar
34.Robertson, J., Surf. Coat. Technol. 50, 185 (1992).CrossRefGoogle Scholar
35.Morosanu, C.O., Stoica, T., De Mortino, C., Demichelis, F., and Tagliaferro, A., Diamond Relat. Mater. 3, 814 (1994).CrossRefGoogle Scholar
36.He, X.M., Li, H. D., Liu, C.H., and Li, W. Z., J. Mater. Proc. Technol. 63 (1–3), 902 (1997).CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 15 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Characterization and Optical Investigation of Diamondlike Carbon Prepared by Electron Cyclotron Resonance Plasma
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Characterization and Optical Investigation of Diamondlike Carbon Prepared by Electron Cyclotron Resonance Plasma
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Characterization and Optical Investigation of Diamondlike Carbon Prepared by Electron Cyclotron Resonance Plasma
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *