Skip to main content Accessibility help

Presentation of automated procedural guidance in surgical simulation: results of two randomised controlled trials

  • S Wijewickrema (a1), Y Zhou (a1), I Ioannou (a1), B Copson (a1), P Piromchai (a1) (a2), C Yu (a3), R Briggs (a1), J Bailey (a4), G Kennedy (a5) and S O'Leary (a1)...



To investigate the effectiveness and usability of automated procedural guidance during virtual temporal bone surgery.


Two randomised controlled trials were performed to evaluate the effectiveness, for medical students, of two presentation modalities of automated real-time procedural guidance in virtual reality simulation: full and step-by-step visual presentation of drillable areas. Presentation modality effectiveness was determined through a comparison of participants’ dissection quality, evaluated by a blinded otologist, using a validated assessment scale.


While the provision of automated guidance on procedure improved performance (full presentation, p = 0.03; step-by-step presentation, p < 0.001), usage of the two different presentation modalities was vastly different (full presentation, 3.73 per cent; step-by-step presentation, 60.40 per cent).


Automated procedural guidance in virtual temporal bone surgery is effective in improving trainee performance. Step-by-step presentation of procedural guidance was engaging, and therefore more likely to be used by the participants.


Corresponding author

Address for correspondence: Dr Sudanthi Wijewickrema, Department of Surgery (Otolaryngology), University of Melbourne, Level 5, Royal Victorian Eye and Ear Hospital, 32, Gisborne Street, East Melbourne, VIC 3002, Australia Fax: +61 3 9663 1958 E-mail:


Hide All

Presented at the 14th Australasian Auditory Neuroscience Workshop, 4 December 2016, Hobart, Australia.



Hide All
1 Hammoud, MM, Nuthalapaty, FS, Goepfert, AR, Casey, PM, Emmons, S, Espey, EL et al. To the point: medical education review of the role of simulators in surgical training. Am J Obstet Gynecol 2008;199:338–43
2 Reznick, RK, MacRae, H. Teaching surgical skills--changes in the wind. Med Educ 2006;355:2664–9
3 Rhienmora, P, Haddawy, P, Suebnukarn, S, Dailey, MN. Intelligent dental training simulator with objective skill assessment and feedback. Artif Intell Med 2011;52:115–21
4 Fried, MP, Satava, R, Weghorst, S, Gallagher, AG, Sasaki, C, Ross, D et al. Identifying and reducing errors with surgical simulation. Qual Saf Health Care 2004;13(suppl 1):i1926
5 Zhou, Y, Bailey, J, Ioannou, I, Wijewickrema, S, Kennedy, G, O'Leary, S. Constructive real time feedback for a temporal bone simulator. Med Image Comput Comput Assist Interv 2013;16(Pt 3):315–22
6 Zhou, Y, Bailey, J, Ioannou, I, Wijewickrema, SN, O'Leary, S, Kennedy, G. Pattern-based real-time feedback for a temporal bone simulator. In: Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology. New York: ACM, 2013;716
7 Wijewickrema, S, Piromchai, P, Zhou, Y, Ioannou, I, Bailey, J, Kennedy, G et al. Developing effective automated feedback in temporal bone surgery simulation. Otolaryngol Head Neck Surg 2015;152:1082–8
8 Hatala, R, Cook, DA, Zendejas, B, Hamstra, SJ, Brydges, R. Feedback for simulation-based procedural skills training: a meta-analysis and critical narrative synthesis. Adv Health Sci Educ Theory Pract 2014;19:251–72
9 Stefanidis, D, Korndorffer, JR, Heniford, BT, Scott, DJ. Limited feedback and video tutorials optimize learning and resource utilization during laparoscopic simulator training. Surgery 2007;142:202–6
10 Scott, DJ, Goova, MT, Tesfay, ST. A cost-effective proficiency-based knot-tying and suturing curriculum for residency programs. J Surg Res 2007;141:715
11 Lamata, P, Enrique, J, Bello, F, Kneebone, RL, Aggarwal, R. Conceptual framework for laparoscopic VR simulators. IEEE Comput Graph Appl 2006;26:6979
12 Crossan, A, Brewster, S, Reid, S, Mellor, D. Multimodal feedback cues to aid veterinary training simulations. In: Proceedings of the First Workshop on Haptic Human-Computer Interaction. London: Academic Press, 2000;45–9
13 Passmore, PJ, Nielsen, CF, Cosh, W, Darzi, A. Effects of viewing and orientation on path following in a medical teleoperation environment. Proceedings IEEE Virtual Reality 2001;209–15
14 Botden, SM, de Hingh, IH, Jakimowicz, JJ. Meaningful assessment method for laparoscopic suturing training in augmented reality. Surg Endosc 2009;23:2221–8
15 Butler, NN, Wiet, GJ. Reliability of the Welling scale (WS1) for rating temporal bone dissection performance. Laryngoscope 2007;117:1803–8
16 McDougall, EM. Validation of surgical simulators. J Endourol 2007;21:244–7
17 Strandbygaard, J, Bjerrum, F, Maagaard, M, Winkel, P, Larsen, CR, Ringsted, C et al. Instructor feedback versus no instructor feedback on performance in a laparoscopic virtual reality simulator: a randomized trial. Ann Surg 2013;257:839–44
18 Kruglikova, I, Grantcharov, TP, Drewes, AM, Funch-Jensen, P. The impact of constructive feedback on training in gastrointestinal endoscopy using high-fidelity virtual-reality simulation: a randomised controlled trial. Gut 2010;59:181–5
19 Xeroulis, GJ, Park, J, Moulton, CA, Reznick, RK, LeBlanc, V, Dubrowski, A. Teaching suturing and knot-tying skills to medical students: a randomized controlled study comparing computer-based video instruction and (concurrent and summary) expert feedback. Surgery 2007;141:442–9
20 Walsh, CM, Ling, SC, Wang, CS, Carnahan, H. Concurrent versus terminal feedback: it may be better to wait. Acad Med 2009;84(10 suppl):S54–7
21 Chang, JY, Chang, GL, Chien, CJ, Chung, KC, Hsu, AT. Effectiveness of two forms of feedback on training of a joint mobilization skill by using a joint translation simulator. Phys Ther 2007;87:418–30
22 Wulf, G, Shea, CH. Understanding the role of augmented feedback: the good, the bad and the ugly. In: Williams, AM, Hodges, NJ, eds. Skill Acquisition in Sport: Research, Theory and Practice. London: Routledge, 2004;121–44
23 Salmoni, AW, Schmidt, RA, Walter, CB. Knowledge of results and motor learning: a review and critical reappraisal. Psychol Bull 1984;95:355–86
24 Sweller, J. Cognitive load during problem solving: effects on learning. Cogn Sci 1988;12:257–85
25 Kirschner, PA. Cognitive load theory: implications of cognitive load theory on the design of learning. Learn Instr 2002;12:110
26 Ericsson, KA. Deliberate practice and the acquisition and maintenance of expert performance in medicine and related domains. Acad Med 2004;79:S7081
27 Cox, M, Irby, DM, Reznick, RK, MacRae, H. Teaching surgical skills – changes in the wind. N Engl J Med 2006;355:2664–9
28 Wijewickrema, S, Zhou, Y, Bailey, J, Kennedy, G, O'Leary, S. Provision of automated step-by-step procedural guidance in virtual reality surgery simulation. In: Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology. New York: ACM, 2016;69–72



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed