Skip to main content Accessibility help

Collagen matrix as an inlay in endoscopic skull base reconstruction

  • G M Oakley (a1) (a2), J M Christensen (a2), M Winder (a2) (a3), B P Jonker (a2) (a3), A Davidson (a4), T Steel (a3), C Teo (a5) and R J Harvey (a2) (a4)...



Multi-layer reconstruction has become standard in endoscopic skull base surgery. The inlay component used can vary among autografts, allografts, xenografts and synthetics, primarily based on surgeon preference. The short- and long-term outcomes of collagen matrix in skull base reconstruction are described.


A case series of patients who underwent endoscopic skull base reconstruction with collagen matrix inlay were assessed. Immediate peri-operative outcomes (cerebrospinal fluid leak, meningitis, ventriculitis, intracranial bleeding, epistaxis, seizures) and delayed complications (delayed healing, meningoencephalocele, prolapse of reconstruction, delayed cerebrospinal fluid leak, ascending meningitis) were examined.


Of 120 patients (51.0 ± 17.5 years, 41.7 per cent female), peri-operative complications totalled 12.7 per cent (cerebrospinal fluid leak, 3.3 per cent; meningitis, 3.3 per cent; other intracranial infections, 2.5 per cent; intracranial bleeding, 1.7 per cent; epistaxis, 1.7 per cent; and seizures, 0 per cent). Delayed complications did not occur in any patients.


Collagen matrix is an effective inlay material. It provides robust long-term separation between sinus and cranial cavities, and avoids donor site morbidity, but carries additional cost.


Corresponding author

Address for correspondence: Dr Gretchen M Oakley, 2233 Post St, 3rd Floor, Box 1225, San Francisco, CA 94117, USA Fax: +1 415 885 7546 E-mail:


Hide All

Presented as a poster at the Australian Society of Otolaryngology Head and Neck Surgery Annual Scientific Meeting, 6–8 March 2016, Melbourne, Victoria, Australia.



Hide All
1 Harvey, RJ, Smith, JE, Wise, SK, Patel, SJ, Frankel, BM, Schlosser, RJ. Intracranial complications before and after endoscopic skull base reconstruction. Am J Rhinol 2008;22:516–21
2 Bernal-Sprekelsen, M, Rioja, E, Ensenat, J, Enriquez, K, Viscovich, L, Agredo-Lemos, FE et al. Management of anterior skull base defect depending on its size and location. Biomed Res Int 2014;2014:346873
3 Bhavana, K, Kumar, R, Keshri, A, Aggarwal, S. Minimally invasive technique for repairing CSF leaks due to defects of posterior table of frontal sinus. J Neurol Surg B Skull Base 2014;75:183–6
4 Farooq, MU, Ansari, MA. Cerebrospinal fluid rhinorrhea: etiology, site of leakage and endoscopic management. J Coll Physicians Surg Pak 2011;21:460–3
5 Kong, DS, Kim, HY, Kim, SH, Min, JY, Nam, DH, Park, K et al. Challenging reconstructive techniques for skull base defect following endoscopic endonasal approaches. Acta Neurochir (Wien) 2011;153:807–13
6 Sanders-Taylor, C, Anaizi, A, Kosty, J, Zimmer, LA, Theodosopoulos, PV. Sellar reconstruction and rates of delayed cerebrospinal fluid leak after endoscopic pituitary surgery. J Neurol Surg B Skull Base 2015;76:281–5
7 Amit, M, Margalit, N, Abergel, A, Gil, Z. Fascia lata for endoscopic reconstruction of high-flow leaks: the champagne cork technique. Otolaryngol Head Neck Surg 2013;148:697700
8 Luginbuhl, AJ, Campbell, PG, Evans, J, Rosen, M. Endoscopic repair of high-flow cranial base defects using a bilayer button. Laryngoscope 2010;120:876–80
9 Ozturk, O, Polat, S, Uneri, C. Endoscopic endonasal management of cerebrospinal fluid rhinorrhea. J Craniofac Surg 2012;23:1087–92
10 Villaret, AB, Yakirevitch, A, Bizzoni, A, Bosio, R, Bignami, M, Pistochini, A et al. Endoscopic transnasal craniectomy in the management of selected sinonasal malignancies. Am J Rhinol Allergy 2010;24:60–5
11 Emanuelli, E, Milanese, L, Rossetto, M, Cazzador, D, d'Avella, E, Volo, T et al. The endoscopic endonasal approach for cerebrospinal fluid leak repair in the elderly. Clin Neurol Neurosurg 2015;132:21–5
12 Germani, RM, Vivero, R, Herzallah, IR, Casiano, RR. Endoscopic reconstruction of large anterior skull base defects using acellular dermal allograft. Am J Rhinol 2007;21:615–18
13 Eloy, JA, Patel, SK, Shukla, PA, Smith, ML, Choudhry, OJ, Liu, JK. Triple-layer reconstruction technique for large cribriform defects after endoscopic endonasal resection of anterior skull base tumors. Int Forum Allergy Rhinol 2013;3:204–11
14 Gaynor, BG, Benveniste, RJ, Lieberman, S, Casiano, R, Morcos, JJ. Acellular dermal allograft for sellar repair after transsphenoidal approach to pituitary adenomas. J Neurol Surg B Skull Base 2013;74:155–9
15 Ismail, AS, Costantino, PD, Sen, C. Transnasal transsphenoidal endoscopic repair of CSF leakage using multilayer acellular dermis. Skull Base 2007;17:125–32
16 Liebelt, BD, Huang, M, Baskin, DS. Sellar floor reconstruction with the Medpor implant versus autologous bone after transnasal transsphenoidal surgery: outcome in 200 consecutive patients. World Neurosurg 2015;84:240–5
17 Chung, SB, Nam, DH, Park, K, Kim, JH, Kong, DS. Injectable hydroxyapatite cement patch as an on-lay graft for the sellar reconstructions following endoscopic endonasal approach. Acta Neurochir (Wien) 2012;154:659–64
18 Harvey, RJ, Parmar, P, Sacks, R, Zanation, AM. Endoscopic skull base reconstruction of large dural defects: a systematic review of published evidence. Laryngoscope 2012;122:452–9
19 Oakley, GM, Orlandi, RR, Woodworth, BA, Batra, PS, Alt, JA. Management of cerebrospinal fluid rhinorrhea: an evidence-based review with recommendations. Int Forum Allergy Rhinol 2016;6:1724
20 Soudry, E, Turner, JH, Nayak, JV, Hwang, PH. Endoscopic reconstruction of surgically created skull base defects: a systematic review. Otolaryngol Head Neck Surg 2014;150:730–8
21 Citardi, MJ, Cox, AJ 3rd, Bucholz, RD. Acellular dermal allograft for sellar reconstruction after transsphenoidal hypophysectomy. Am J Rhinol 2000;14:6973
22 Lorenz, RR, Dean, RL, Hurley, DB, Chuang, J, Citardi, MJ. Endoscopic reconstruction of anterior and middle cranial fossa defects using acellular dermal allograft. Laryngoscope 2003;113:496501
23 Illing, E, Chaaban, MR, Riley, KO, Woodworth, BA. Porcine small intestine submucosal graft for endoscopic skull base reconstruction. Int Forum Allergy Rhinol 2013;3:928–32
24 Braca, JA 3rd, Marzo, S, Prabhu, VC. Cerebrospinal fluid leakage from tegmen tympani defects repaired via the middle cranial fossa approach. J Neurol Surg B Skull Base 2013;74:103–7
25 Narotam, PK, Qiao, F, Nathoo, N. Collagen matrix duraplasty for posterior fossa surgery: evaluation of surgical technique in 52 adult patients. Clinical article. J Neurosurg 2009;111:380–6
26 Shorter, CD, Connor, DE Jr, Thakur, JD, Gardner, G, Nanda, A, Guthikonda, B. Repair of middle fossa cerebrospinal fluid leaks using a novel combination of materials: technical note. Neurosurg Focus 2012;32:E8
27 Fokkens, WJ, Lund, VJ, Mullol, J, Bachert, C, Alobid, I, Baroody, F et al. European Position Paper on Rhinosinusitis and Nasal Polyps 2012. Rhinol Suppl 2012;(23):1298
28 Chatrath, P, Saleh, HA. Endoscopic repair of cerebrospinal fluid rhinorrhea using bone pate. Laryngoscope 2006;116:1050–3
29 Zanation, AM, Carrau, RL, Snyderman, CH, McKinney, KA, Wheless, SA, Bhatki, AM et al. Nasoseptal flap takedown and reuse in revision endoscopic skull base reconstruction. Laryngoscope 2011;121:42–6
30 Hadad, G, Bassagasteguy, L, Carrau, RL, Mataza, JC, Kassam, A, Snyderman, CH et al. A novel reconstructive technique after endoscopic expanded endonasal approaches: vascular pedicle nasoseptal flap. Laryngoscope 2006;116:1882–6
31 Cavallo, LM, Messina, A, Esposito, F, de Divitiis, O, Dal Fabbro, M, de Divitiis, E et al. Skull base reconstruction in the extended endoscopic transsphenoidal approach for suprasellar lesions. J Neurosurg 2007;107:713–20
32 Wessell, A, Singh, A, Litvack, Z. One-piece modified gasket seal technique. J Neurol Surg B Skull Base 2013;74:305–10
33 Tabaee, A, Kamat, A, Shrivastava, R. Complex reconstruction of the sella using absorbable mini-plate in revision endoscopic pituitary surgery: technical note. J Neurol Surg A Cent Eur Neurosurg 2013;74:313–17
34 Sanna, M, Taibah, A, Russo, A, Falcioni, M, Agarwal, M. Perioperative complications in acoustic neuroma (vestibular schwannoma) surgery. Otol Neurotol 2004;25:379–86
35 Taha, AN, Almefty, R, Pravdenkova, S, Al-Mefty, O. Sequelae of autologous fat graft used for reconstruction in skull base surgery. World Neurosurg 2011;75:692–5
36 Hwang, PH, Jackler, RK. Lipoid meningitis due to aseptic necrosis of a free fat graft placed during neurotologic surgery. Laryngoscope 1996;106:1482–6
37 Leng, LZ, Brown, S, Anand, VK, Schwartz, TH. “Gasket-seal” watertight closure in minimal-access endoscopic cranial base surgery. Neurosurgery 2008;62(5 suppl 2):342–3
38 Zerris, VA, James, KS, Roberts, JB, Bell, E, Heilman, CB. Repair of the dura mater with processed collagen devices. J Biomed Mater Res B Appl Biomater 2007;83:580–8
39 Prickett, KK, Wise, SK, Delgaudio, JM. Choice of graft material and postoperative healing in endoscopic repair of cerebrospinal fluid leak. Arch Otolaryngol Head Neck Surg 2011;137:457–61
40 Walsh, E, Illing, E, Riley, KO, Cure, J, Srubiski, A, Harvey, RJ et al. Inaccurate assessments of anterior cranial base malignancy following nasoseptal flap reconstruction. J Neurol Surg B Skull Base 2015;76:385–9
41 Leong, JL, Citardi, MJ, Batra, PS. Reconstruction of skull base defects after minimally invasive endoscopic resection of anterior skull base neoplasms. Am J Rhinol 2006;20:476–82
42 World Health Organization. WHO Guidelines on Tissue Infectivity Distribution in Transmissible Spongiform Encephalopathies. Geneva: WHO, 2006
43 Warren, WL, Medary, MB, Dureza, CD, Bellotte, JB, Flannagan, PP, Oh, MY et al. Dural repair using acellular human dermis: experience with 200 cases: technique assessment. Neurosurgery 2000;46:1391–6


Collagen matrix as an inlay in endoscopic skull base reconstruction

  • G M Oakley (a1) (a2), J M Christensen (a2), M Winder (a2) (a3), B P Jonker (a2) (a3), A Davidson (a4), T Steel (a3), C Teo (a5) and R J Harvey (a2) (a4)...


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed