Skip to main content Accessibility help
×
×
Home

General Theory of Subglacial Cavitation and Sliding of Temperate Glaciers

  • L. Lliboutry (a1)

Abstract

Earlier theories of Weertman and the present author are reviewed and compared; both are insufficient to account for the facts observed at the tongue of the Allalingletscher.

A calculation of the stresses and heat flow at the bed of a glacier with a sinusoidal profile is given which takes account of any degree of subglacial cavitation. The sliding due to plasticity and that due to pressure melting are related to this degree of cavitation and it is shown that these two terms are additive. There results an expression for the friction f ω in terms of the total sliding velocity u and the height of the bumps a. For a given and large enough value of u, f ω (a) exhibits two maxima which are equal and independent of u.

The paper then considers a more realistic model of the bed consisting of a superposition of sine waves all having the same roughness r, and a decreasing in a geometrical progression. The biggest a may be inferred from the overall profile of the bedrock; the resulting frictional force can be regarded either as part of the total frictional force f in an overall view for which f = ρgh sin α holds, or else as a correction to such a value on the small scale (the best point of view for crevasse studies). To a first approximation Coulomb’s law of friction holds provided one takes account of the interstitial water pressure at the ice-rock interface.

This interstitial pressure p is next related to the thickness of the glacier h. If the subglacial hydraulic system is at atmospheric pressure, p is proportional to h. Next, if the sliding velocity is not too large, the surface slope approaches 1.6r ≈ 0.12 and kinematic waves (which move four times as fast as the ice) disappear rapidly. If the hydraulic system is not at atmospheric pressure the surface slope is smaller and flow instabilities can occur.

Résumé

Théorie générale de la cavitation sous-glaciaire et du glissement des glaciers tempérés. Les théories précédentes de Weertman et de l’auteur sont résumées et comparées. Toutes deux s’avèrent insuffisantes pour rendre compte des faits observés à la langue du Glacier de l’Allalin.

On effectue le calcul des contraintes et des flux de chaleur contre un lit ayant un profil sinusoïdal pour un degré de cavitation quelconque. Le glissement par plasticité et le glissement par fonte devant l’obstacle sont liés à ce degré de cavitation, et il est montré que ces deux glissements sont additifs. On obtient ainsi le frottement f ω fonction de la vitesse de glissement totale u et de la hauteur des bosses a. Pour une valeur donnée et suffisamment grande de u, f ω (a) présente deux maximums, égaux et indépendants de u.

On envisage ensuite un modèle de lit rocheux plus réaliste, consistant en la superposition de sinusoïdes toutes de même rugosité, et dont les tailles décroissent en progression géométrique. La sinusoide la plus grande peut être déduite du profil longitudinal de l’ensemble du lit; le frottement qu’elle introduit peut être considéré soit comme faisant partie de la force totale de frottement f, dans une perspective globale dans laquelle f = ρgh sin α, ou bien comme un terme correctif à cette dernière valeur (dans une perspective de détail, la bonne pour les études de crevasses). Dans une première approximation la loi de Coulomb du frottement est valable, pourvu qu’on tienne compte de la pression interstitielle de l’eau entre glace et rocher.

Cette pression interstitielle p est ensuite liée à l’épaisseur h du glacier. Lorsque le réseau hydraulique sous-glaciaire se trouve à la pression atmosphérique, p est proportionnel à h. II s’ensuit, lorsque la vitesse de glissement n’est pas trop grande, que la pente de la surface est voisine de 1,6r ≈ 0,12 et que les ondes cinématiques (qui se déplacent 4 fois plus vite que la glace) disparaissent rapidement. Lorsque le réseau hydraulique n’est pas à la pression atmosphérique, la pente superficielle est inférieure, et des instabilités dans l’écoulement peuvent se manifester.

Zusammenfassung

Allgemeine Theorie der subglazialen Hohlraumbildung und des Gleiten von temperierten Gletschern. Frühere Theorien von Weertman und dem Autor werden zusammenfassend dargestellt und miteinander verglichen; beide erweisen sich zur Erklärung der Beobachtungen an der Zunge des AllalinGletschers als unzureichend.

Die Spannungen und der Wärmefluss an einem Gletscherbett mit sinusförmigen Profil werden unter Berücksichtigung beliebiger subglazialer Hohlraumbildung berechnet. Das Gleiten infolge von Plastizität und jenes infolge von Druckschmelze sind vom Ausmass der Hohlraumbildung abhängig und es wird gezeigt, dass diese beiden Komponenten additiv zusammenwirken. Es ergibt sich ein Ausdruck für die Reibung f ω als Funktion der Gesamtgleitgeschwindigkeit u und der Höhe a der Hindernisse. Für einen ausreichend grossen, gegebenen Wert u nimmt f ω (a) zwei gleich grosse und von u unabhängige Maxima ein.

Die Arbeit behandelt dann ein wirklichkeitsnäheres Modell des Bettes, dessen Profil durch Überlagerung von Sinuskurven mit derselben Rauhigkeit r entsteht, wobei a in geometrischer Progression abnimmt. Das grösste a mag dem Gesamtprofil des Untergrundes entsprechen; die resultierende Reibungskraft: kann entweder als Teil der Gesamtreibungskraft f in einem Gesamtansatz, für den f = ρgh sin α gilt, oder als örtliches Korrektionsglied zu diesem Wert (geeignet für Spaltenstudien) betrachtet werden. In erster Annäherung gilt Coulombs Reibungsgesetz, vorausgesetzt, dass der Druck der Wasserschicht zwischen Eis und Fels berücksichtigt wird.

Dieser Druck p hängt stark von der Dicke h des Gletschers ab. Wenn das subglaziale Wassernetz unter atmosphärischem Druck steht, ist p proportional zu h. Daraus folgt bei nicht zu grosser Gleitgeschwindigkeit, dass die Oberflächenneigung annähernd 1.6r ≈ 0,12 beträgt und dass kinematische Wellen (die viermal so schnell als das Eis sich fortbewegen) schnell verschwinden. Steht das hydraulische System nicht unter atmosphärischem Druck, so ist die Oberflächenneigung geringer und es können Instabilitäten in der Fliessbewegung auftreten.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      General Theory of Subglacial Cavitation and Sliding of Temperate Glaciers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      General Theory of Subglacial Cavitation and Sliding of Temperate Glaciers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      General Theory of Subglacial Cavitation and Sliding of Temperate Glaciers
      Available formats
      ×

Copyright

References

Hide All
Bowden, F. P. Tabor, D. 1956. Friction and lubrication. London, Methuen. (Monographs on Physical Subjects.)
Brepson, R. 1966. Premiers résultats obtenus avec le viscomètre à glace de Grenoble. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences (Paris), Sér. B, Tom. 263, No. 15, p. 87679.
Carbonell, M. Bauer, A. 1961. Application de la méthode d’aérocheminement à la détermination de la vitesse superficielle des glaciers du Groenland. Bulletin de la Société Française de Photogrammétrie, No. 3, p. 11024.
Carol, H. 1947. The formation of roches moutonnées . Journal of Glaciology, Vol. 1, No. 2, p. 5759.
Haefeli, R. 1966. Note sur la classification, le mécanisme et le contrôle des avalanches de glace et des crues glaciaires extraordinaires. Union [Géodésique] et Géophysique Internationale. Association Internationale d’Hydrologie Scientifique. Commission pour la Neige et la Glace. Division Neige Saisonnière et Avalanches. Symposium international sur les aspects scientifiques des avalanches de neige, 5–10 avril 1965, Davos, Suisse, p. 31625.
Hubbert, M. K. Rubey, W. W. 1959. Role of fluid pressure in mechanics of overthrust faulting. I. Mechanics of fluid-filled porous solids and its application to overthrust faulting. Bulletin of the Geological Society of America, Vol. 70, No. 2, p. 11566.
Jaeger, R. M. Schuring, D. J. 1966. Spectrum analysis of a terrain of Mare Cognitum. Journal of Geophysical Research, Vol. 71, No. 8, p. 202328.
Kamb, W. B. LaChapelle, E. R. 1964. Direct observation of the mechanism of glacier sliding over bedrock. Journal of Glaciology, Vol. 5, No. 38, p. 15972.
Koechlin, R. 1944. Les glaciers et leur mécanisme. Lausanne, F. Rouge et Cie.
Lliboutry, L. 1958[a]. Contribution à la théorie du frottement du glacier sur son lit. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences (Paris), Tom. 247, No. 3, p. 31820.
Lliboutry, L. 1958[b]. Frottement sur le lit et mouvement par saccades d’un glacier. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences (Paris), Tom. 247, No. 2, p. 22830.
Lliboutry, L. 1959. Une théorie du frottement du glacier sur son lit. Annales de Géophysique, Tom. 15, No. 2, 25065.
Lliboutry, L. 1962. L’érosion glaciaire. Union Géodésique el Géophysique Internationale. Association Internationale d’Hydrologie Scientifique. Commission de l’Érosion Continentale. Colloque de Bari 1–10–8–10 1962, p. 21925.
Lliboutry, L. 1964[a]. Nouveau calcul de la variation du point de fusion sous l’effet des contraintes et application au processus de fonte et regel sous-glaciaire. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences (Paris), Tom. 258, No. 5, p. 157779.
Lliboutry, L. 1964[b]. Sub-glacial “supercavitation” as a cause of the rapid advances of glaciers. Nature, Vol. 202, No. 4927, p. 77.
Lliboutry, L. 1965. Traité de glaciologie. Tom. 2. Paris, Masson et Cie. [See “Théorie du glissement d’un glacier sur son lit”, p. 64052.]
Lliboutry, L. 1966. Bottom temperatures and basal low-velocity layer in an ice sheet. Journal of Geophysical Research, Vol. 71, No. 10, p. 253543.
Mathews, W. H. 1964. Water pressure under a glacier. Journal of Glaciology, Vol. 5, No. 38, p. 23540.
Millecamps, R. 1956[a]. Sur les directions d’écoulement superficiel d’un tronçon de la Mer de Glace. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences (Paris), Tom. 242, No. 3, p. 397400.
Millecamps, R. 1956[b]. Sur la variation des vitesses d’écoulement superficiel de la glace d’un tronçon de glacier. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences (Paris), Tom. 242, No. 6, p. 80306.
Nye, J. F. 1953. The flow law of ice from measurements in glacier tunnels, laboratory experiments and the Jungfraufirn borehole experiment. Proceedings of the Royal Society, Ser. A, Vol. 219, No. 1139, p. 47789.
Nye, J. F. 1959. The deformation of a glacier below an ice fall. Journal of Glaciology, Vol. 3, No. 25, p. 386408.
Nye, J. F. 1965. The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section. Journal of Glaciology, Vol. 5, No. 41, p. 66190.
Post, A. S. 1960. The exceptional advances of the Muldrow, Black Rapids and Susitna Glaciers. Journal of Geophysical Research, Vol. 65, No. 11, p. 370312.
Reynaud, [L.] 1959. Prospection au Glacier d’Argentières, campagne 1958. Société Hydrotechnique de France. Section de Glaciologie. Comptes Rendus Ronéo des Séances, 20 février 1959.
Scheidegger, A. E. 1961. Theoretical geomorphologyy. Berlin, Springer.
Shumskiy, P. A. 1966. Theory of glacier variations; reply to Dr. Nye’s letter. Journal of Glaciology, Vol. 6, No. 44. p. 319. [Letter.]
Smith, B. G. 1967. Lunar surface roughness: shadowing and thermal emission. Journal of Geophysical Research. Vol. 72, No. 16, p. 405967.
Stone, R. O. Dugundji, J. 1965. A study of microrelief. Engineering Geology (Amsterdam), Vol. 1, No. 2. p. 89187.
Vallot, G. Vallot, J. igoo. Expériences sur la vitesse de la circulation de l’eau dans les torrents et sous les glaciers. Annales de l’Observatoire Météorologique, Physique et Glaciaire du Mont Blanc, Tom. 4, p. 1934.
Vivian, R. 1966. La catastrophe du glacier Allalin. Revue de Géographie Alpine, Tom. 54, Fasc. I, p. 97112.
Weertman, J. 1957. On the sliding of glaciers. Journal of Glaciology, Vol. 3, No. 21, p. 3338.
Weertman, J. 1962. Catastrophic glacier advances. Union Géodésique et Géophysique Internationale. Association Internationale d’Hydrologie Scientifique. Commission des Neiges et Glaces. Colloque d’Obergurgl, 10–9–18–9 1962, p. 3139.
Weertman, J. 1964[a]. The theory of glacier sliding. Journal of Glaciology, Vol. 5, No. 39, p. 287303.
Weertman, J. 1964[b]. Discussion on Kamb and LaChapelle’s paper “Direct observation of the mechanism of glacier sliding over bedrock”. Journal of Glaciology, Vol. 5, No. 39, p. 37475. [Letter.]
Weertman, J. 1967. An examination of the Lliboutry theory of glacier sliding. Journal of Glaciology, Vol. 6, No. 46, p. 48994.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Glaciology
  • ISSN: 0022-1430
  • EISSN: 1727-5652
  • URL: /core/journals/journal-of-glaciology
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed