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ABSTRACT. Earli er theori es of Weertman and the present a uthor a re reviewed a nd compared ; bo th are 
insufficient to account for the facts observed a t the tongue of the Alla lingletscher. 

A calculation of the stresses and heat Aow at the bed of a glacier with a sinusoidal profile is given which 
takes account of any degree of subglacia l cavitation. The sliding due to plasti city and tha t due to pressure 
melting are rela ted to this d egree of cavitation and it is shown that these two terms a re additi ve. There 
results an expression for the fri ctionJw in terms of the tota l sliding velocity u a nd the height of the bumps a. 
For a given and la rge enough value of u, Jw (a) exhibits two maxima which are equa l a nd independent of 11. 

The paper then considers a more realisti c mod el of the bed consisting of a superposition of sine waves a ll 
having the same roughness r, a nd a decreasing in a geometrica l progression. T he biggest a may be inferred 
from the overa ll profile of the bedrock; the resulting frictiona l force can be regarded e ither as pa rt of the tota l 
fri ctiona l forceJ in a n overa ll view for whichJ = pgh sin a ho lds, or else as a correc tion to such a va lue on the 
small scale (the best point of view for crevasse studies) . T o a first a pproximat ion Cou lomb's law of fri ction 
holds provided one ta kes account of the interstiti a l water pressure at the ice- rock interface. 

This interstitia l pressure p is next rel a ted to the thickness of the glac ier h. If the subglacia l hydra ulic 
sys tem is at atmospheric pressure, p is proportiona l to h. Next, if the sliding ve locity is not too la rge, the 
surface slope a pproaches 1.6r = 0. 12 a nd kinematic waves (wh ich move four times as fast as the ice) d isappear 
ra pidly. If the hydra ulic system is not at atmospheri c pressure the surface slope is sma ller and Aow insta ­
bili ties can occur. 

RESUME. Thiorie generale de la cavitalion sOlls-glaciaire el dll glissemenl des glaciers temperes. Les theories 
precedentes de W eertman et d e I'auteur sont resumees et comparees. T outes deux s'averent insuffisantes pour 
rendre compte des fa its observes a la langue du G lacier de l'AlIa lin . 

O n e A"ectue le calcul des conlraintes et des Aux de cha leur con tre un lit ayant un profil sinusoidal pour un 
degre de cavita tion quelconque. Le glissement par plasticite et le gli ssement p ar fonte devant I'obstacle sont 
li es a ce degre de cavitation , et il est montre que ces deux glissements sont additifs. On obtient a insi le 
frottementJw fonction de la vitesse de glissement tota le 11 et de la hau teur des bosses a. Pour une va leur 
don nee et suffisamment grande de 1I, Jw (a) presente d eux maximums, egaux et independants d e 11. 

O n envisage ensuite un modele d e lit rocheux plus rea liste, consistant en la superposition de sinusoides 
to utes de meme rugosite, et dont les tai ll es decroissent en progress ion geometrique. La sinusoide la plus 
grande p e ut etre d eduite du profillongitudinal de I'ensemble du lit ; le fro ttement qu 'elle introduit p eut e tre 
considere soit comme faisant partie d e la force tota le d e frottement J, dans une perspec tive g lobale dans 
laquelleJ = pgh sin a, ou bien comme un terme correc tif a cette derniere va leur (dans une perspective d e 
deta il , la bonne pour les etudes de crevasses) . D a ns une premiere approximation la lo i d e Coulomb du 
frottement est valable, pourvu qu'on tienne compte de la pression in terstitiell e de I'ea u entre g lace et rocher. 

Cette pression interstitiell e pest ensuite li ee a l' epa isseur h du glacier. Lorsque le reseau hydra ulique sous­
glacia ire se trouve a la press ion atmospherique, pest proportionnel a h. 11 s'ensuit, lorsque la vitesse d e 
g lissement n' es t pas trop gra nde, que la pente de la surface est voisine de 1 ,6r = 0 , 12 et que les ondes 
cinema tiques (qui se deplacen t 4 fois p lus vite que la g lace) d ispa ra issent rapidement. Lorsque le reseau 
hydra ulique n'est pas a la pression a tmospherique, la pente superfi cielle est inferieure, et des instabilites dans 
I'ecoulement peuvent se manifester . 

ZUSAMMENFASSUNG. Allgemeine Theorie der sllbglazialell Hohlrallmbildllllg 1Ind des Cleitem VO Il temperierlell 
Clelschern. Fruhere Theorien von W eer tman und dem AutoI' werden zusammenfassend dargestellt und 
mite inander verglichen ; beide erweisen si ch zur Erklarung der Beobachtungen an der Zunge des Alla lin­
G letschers a ls unzureichend. 

Di e Spannungen und der WarmeAuss an einem G letscherbett mit sinusfOrmigen Profi l werden unter 
Berucksichtigung beliebiger subglazia ler Hohlraumbildung berechnet. Das G leiten infolge von P lastizitat 
und j enes infolge von Druckschmelze sind vom Ausmass d er H ohlra umbildung abha ngig und es wird 
gezeigt, dass diese beiden K omponenten additiv zusammenwirken. Es erg ibt sich e in Ausdruck fur die 
R eibung Jw a ls Funktion der Gesamtgleitgeschwindigkeit u und del' H ohe a der Hindernisse. Fur einen 
ausreichend grossen, gegebenen Wert 11 nimmtJw(a) zwei gleich grosse und von II unabha ngigeMaxima ein . 

Die Arbeit behandelt dann ein wirklichkeitsnaheres Modell des Bettes, dessen Profi l durch U berlagerung 
von Sinuskurven mit derselben R a uhigkeit r entsteht, wobei a in geometri scher Progression abnimmt. Das 
grosste a mag d em Gesamtprofi l d es U ntergrundes entsprechen ; die resul tierende R eibungskraft kann 
entweder a ls T e il der Gesamtreibungskraft J in einem Gesamtansatz, fur den J = pgh sin a gilt, odeI' a ls 
ortli ches Korrektionsglied zu diesem W ert (geeignet filr Spaltenstudien) betrachtet werden. In erster 
Annaherung gi lt Coulombs R eibungsgesetz, vorausgesetzt, dass d er Druck d er Wasserschicht zwischen Eis 
und Fels berucksichtigt wird. 

Dieser Druck p hangt stark von der Dicke h d es G letschers a b . ' '''enn das subglazia le vVassernetz unter 
a tmospharischem Druck steht, ist p proportional zu h. Dara us folgt bei nicht zu grosser Gleitgeschwindigkeit, 
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dass die OberAachenneigung annahernd 1.6r ~ 0 , 12 betragt und dass kinematische Wellen (die viermal so 
schnell als das Eis sich fortbewegen) schnell verschwinden. Steht das hydraulische System nicht unter 
atmospha rischem Druck, so ist di e OberAachenneigung geringer und es konnen Instabilitaten in der Fliess­
bewegung a uftreten. 

INTRODUCTION 

Over the last two decades the movement of glaciers and ice sheets has engendered many 
studies both theoretical and experimental. The linear deformation law (ideal viscosity in 
which strain-rate y is proportional to stress T , y = T/".,, ) has been replaced by a more exact 
non-lineal" law known as Glen's law, y = ET" with n = 3; a law intermediate between ideal 
viscosity and perfect plasticity. However the condition at the lower boundary, that is to say 
the law of friction on the bedrock has only received a small amount of study. Nevertheless 
proper knowledge of this law is quite essential if we are to study fluctuations of velocity and 
length of glaciers, or the stability of glacier tongues on slopes, a problem which the Mattmark 
disaster has made very important. 

Only three alternatives have hitherto been adopted: 

(i) ';::po velocity at the bedrock contact. This is the hypothesis adopted by Weinberg in 1906 
and Somigliana in [925 and more recently again by Nye (1965). Since the drillings 
by Bliimcke and Hess on the Hintereisferner it has been known that this hypothesis 
is not in general exact. In fact slip over the bedrock constitutes practically all of the 
movement of rapid glaciers, whether these are temperate valley glaciers in steep 
zones (e.g. the Mer d e Glace in the chaos of the Geant ice fall ; speed 440 to 830 
m /year ; thickness 30 to 50 m ), or whether they are distributary glaciers from a large 
ice sheet. These latter being cold except in a basal layer a few metres or tens of metres 
thick (Lliboutry, 1966), the deformation in the body of the glacier is much reduced. 
The observed velocities of several kilometres per year (Carbonell and Bauer , 1961 ) 
come practicall y exclusively from sliding. 

(ii ) Constant and uniformfriction. This is the condition imposed by the mechanics of perfect 
plasticity. As introduced by Orowan and Nye in 1951 it led to interesting approxi­
mate results ; thus on a flat bed the profile of an ice sheet is parabolic and independent 
of the accumulation. W e note that it is also usable for a glacier with a semi-circular 
transverse profile assuming that the velocities are parallel. The problem then 
possesses axial symmetry (cylindrical) . 

(iii) Friction an increasing]unction of velocity of sliding alone. ] = Cu I/m where] is the frictional 
force per unit a rea, u is the sliding velocity, m is a positive number, and C is a constant 
(or rather is characteristic of the bedrock, depending on its roughness, but one 
supposes this to be uniform) . If we now combine this with the relation 

] = pgh sin ex 

which relates the frictional force with the density of ice p, the acceleration due to 
gravity g, the glacier thickness h, and the surface slope ex, a law which is valid wh en­
ever the longitudinal stress is uniform, we obtain the relation 

u = k (hex )m.. 

A law u = kM had already been considered in 1903 in order to study glacier fluctuations 
(cf. Lliboutry, [965, p. 734. Erratum: Para 18. 12, line 3, read: une vitesse u independante 
de z. It is k which is independent of x). 

In 1957 W eertman ( [957) reached such a law theoretically with m = (17 + 1)/2 = 2. 
This boundary condition was adopted by N ye for his important theoretical studies on glacier 
fluctuations. It should be noted that although it is traditionally cited in English publ ications, 
W eertman's law has never been experimenta lly verified, any more than ye's theory which 
uses it. Certain qualitative conclusions drawn from it, such as the ex istence of kinematic 
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waves, do not constitute proofs; they can be obtained with other boundary conditions. In 
fact up to now these two authors have cited each other for the basis of their theories! 

Since 1958 the present author has shown (Lliboutry, 1958[a] , Cb], 1959) that the intro­
duction of two new factors into W eertman's theory leads to a completely different law of 
fri ction . 

(a ) The ice may separate from the bed downstream from a protuberance, this cavitation 
being facilitated by the existence of subglacial water at a pressure p (in this paper p 
wi ll represent the absolute pressUI'e of this water and not its excess pressure above 
atmospheric pressure) . 

(b) If there are a succession of bumps wide compared with their height, the friction of the 
glacier may, because of this cavitation, reduce and tend to zero at high velocities. 
This succession of bumps is essential as without it, even with cavitation, one returns 
essentially to the same law of fri ction as without cavitation (Weertman, I 964[a] ; 
Lliboutry, 1965) . 

In this paper this theory of cavitation is corrected, improved a nd completed : (a ) we make a 
better calculation of the stresses and heat flux; (b) we extend the calculation for any cavitation 
(hitherto only a limiting case has been given) ; (c) we show that for a given velocity above a 
certain value the friction is maximum for two sizes of bumps ; our old calculation, following 
that of Weertman, did not give the maximum but an intermediate minimum ; (d ) we estimate 
the value of the interstitial pressure p, hitherto indeterminate; (e) we improve the model of 
the bedrock. 

We fina ll y arrive at a very complicated law offriction, but it can be more or less simplified 
in order to tackle definite problems. This leads to boundary conditions that we can call 
(iv) , (v) and (vi ) : 

(iv) As a first approximation, Coulomb's law of so lid friction (Bowden and Tabor, 1956), 
but in the presence of an interstitial pressure. The friction is proportional to the 
resultant pressure JV, which depends on h but is independent of velocity. 

(v) As a second approximation, a law including a term in u! and a term in N 2 u- !. This 
law allows us to study kinematic waves. 

(vi) Finally, the complete law, necessary in cases which d epart from the usual situation, 
such as the slip of the tongue of the Allalingletscher, cause of the Mattmark disaster. 

Before developing this theory of subglacial cavitation, we examine its experimental basis, 
and then record the exact timetable of previous theories and compare their results. My ideas 
have been presented in English by Weertman in an incomplete and erroneous form, and their 
fundamental difference not made clear. 

I . THE FACTS NEEDING EXPLANATION 

I. I Fluctuations in sliding velocity 

Measurements made in the ablation zone of valley glaciers by Liitschg, E lliston, and others 
(reported by Lliboutry, 1965, p. 624- 26) show that the velocity can double in June when the 
melt water is most abundant . Other observations show that rain-water can play the same role. 

On certain glaciers, careful survey measurements made at six-hourly intervals have shown 
erratic fluctuations in velocity (cf. Lliboutry, 1965, p. 626- 27) . Those of Millecamps (1956[aJ , 
Cb] ) in particular show a somewhat regular j erky movement, which inevitably makes one 
think of a "stick- slip" movement . This suggests that friction for large velocities of sliding 
(kinetic friction ) is lower than friction for slow or zero velocities of sliding (" quasi-static" 
friction ) . 

Other increases in velocity of sliding follow with a certain delay after a series of years of 
high specific balance. A kind of flood wave forms which advances more rapidly than the ice. 
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Nye and Weertman have applied their theory to the study of such waves, without having 
obtained quantitative verifications. In certain cases it seems that one has observed flood waves 
much more rapid than this theory predicts (cf. L1iboutry, 1965, p. 628- 30). 

1.2 Subglacial mechanisms 
Subglacial cavities below protuberances of the bed have often been observed, even under 

46 m of ice at Vesl-Skautbreen or 50 m of ice at the Grindelwaldgletscher (observations of 
McCall and of Carol reported in Lliboutry, 1965, p. 640- 42). Near the snout they become the 
rule and help explain the "crag and tail" features (L1iboutry, 1965, p. 703 and planches 
LXII- LXIII) . The existence of such cavities filled with water under a variable pressure 
allows us to explain subglacial quarrying (L1iboutry, 1962). Periodic capture of these water 
pockets by the glacier allows us to explain the formation of stratified bottom moraine 
(L1iboutry, 1964[a], 1965, p. 688- 89). 

The existence of subglacial water which is not cut off and which is maintained at a pressure 
different from the hydrostatic pressure due to the overlying ice has been observed during 
glacier soundings which have penetrated to bedrock. According to Reynaud (1959), on the 
Glacier d'Argentieres (Mont Blanc massif), in thermal bore holes, the water level dropped 
very rapidly when bedrock was reached at depths between 190 and 236 m- proof that water 
can flow beneath the glacier. Then the water level stabilized at 60 to 80 m below the surface. 
The mean pressure of ice on the bedrock was therefore pgh = 18.5 ± 2 bar, that of the water 
p = q'5 ± 2 bar. 

According to Mathews (1964), the bottom of a mine reached the South Leduc Glacier in 
British Columbia at 160 m below the surface of the glacier (at its centre the glacier reached a 
depth of 270 m) . The pressure of interstitial waLer at the bottom of the mine rose during the 
summers of [g6r and Ig62 to about 42 m of water (pgh = r4 bar, p = 4.2 bar) . A closer 
inspection of the pressure record shows that, following a period of strong melting or heavy 
rain, the pressure rises temporarily a great deal: it reached 130 m of water one day in June 
1962. In January 1963 the pressure remained at 63 m. In February it rose temporarily, then 
fell to 35 m, some ice dam presumably having given way. At the same time the sliding 
velocity must have varied considerably, to judge by the two values given by Mathews: 
25·5 m /year (measured over 35 days) and 34.6 m /year (measured over [7 days) . It is unfor­
tunate that the author does not give the surface slope, which is needed to calculate the friction, 
and that he did not register the velocity of sliding by a recording gauge. His measurements are 
nevertheless very valuable and must be generalized. 

The uniqueness of the hydraulic system under the Glacier d'Argentieres has been proved 
by injection of potassium dichromate. One can also quote the old measurements ofVallot and 
Vallot ( 'goo) on the Mer de Glace: the subglacial stream was only 1.8 times slower than an 
open stream of the same slope; this proves the non-existence, in this case at least, of a large 
volume of liquid water in the body of the glacier. 

1 .3 The detached fragments of the Allalingletscher 

The Allalingletscher in the Saas-Fce valley (Valais, Switzerland) descends a relatively 
gentle slope from 4'90 m to 2850 m, then flows down a much steeper slope of polished rocks. 
As far back as records go, and until '944, it reached a flatter region at the bottom of the valley 
and its snout was supported there, but, following an exceptional retreat occurring principally 
between 1944 and 1947, the snout rose to the middle of the slope, 600 m uphill. It thus formed 
a very thin layer of ice (less than 25 m thick, average about '2 m ), a site for dramatic pheno­
mena exclusively due to sliding (the horizontal shearing within so thin a layer of ice is com­
pletel y negligible) . 

Following the Mattmark catastrophe, studies have been made by the Versuchsanstalt fi.ir 
Wasserbau und Erdbau of the Eidgenossischen Technische Hochschule, Zurich, by the 
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Elektrowatt company (chief contractors for the Mattmark dam), and by the author as expert 
commissioned by the examining magistrate at Visp. Unfortunately because of the enquiry 
being conducted, it is at present impossible to publish the reports made, and only facts well 
known publicly, such as those reported for example by Vivian (1966) can be used. 

The layer of ice which separated as an avalanche on 30 August 1965, and buried 88 
workmen employed in the construction of the Mattmark dam, had a surface area of about 
100000 m' and a volume of 1.2 X 106 m3. Immediately after the catastrophe it was noticed 
that further uphill another similar layer of the glacier, of surface area about 60000 m ' had 
detached itself from the main body and was advancing rapidly. Between this layer and the 
rest of the glacier, rock appeared along a growing fracture . The mean speed of the most rapid 
part of the layer went through a maximum between the 16th and 22nd day after the catas­
trophe (4.4 m /day) . Two months after the catastrophe, the velocity had become very uniform 
in the layer and had fallen to 1.0 m /day. Rothlisberger and the author independently came 
to the conclusion that a similar phenomenon had occurred on the tongue of the Al1alin­
gletscher as had occurred on the Muldrow Glacier and others (Post, 1960) . 

During this time, since 25 August, there had been neither melting nor rain, only snowfalls. 
o water came out from beneath the front of the layer. The cold (which , penetrating down 

crevasses must have reached the bedrock at many places) had considerably reduced the outflow 
of the small glacier streams. 

(i) The avalanching of the glacier tongue on a very uniform slope seems to prove that 
the kinetic friction is lower than the quasi-static friction and does not increase considerably 
with velocity. This is in agreement with my views, and contrary to Weertman 's theories 
(Weertman, 1957, I964[aJ ). 

(ii) The avalanche sliding of the 30 August, and also the very rapid sliding which took 
place in September, do not seem to be related to an overall water layer (which makes us reject 
the hypothesis of Weertman ( 1962)) . 

(iii) One can have high-speed sliding of an ice layer with fri ction on the bedrock signifi­
cantly less than I bar. This can only be explained on W eertman's theory if one allows an 
exceptionally small roughness of the bed. 

(iv) This high-speed sliding of an isolated layer of ice sometimes seems to be stable, which 
contradicts my [965 theory (Lliboutry, 1965, p. 642- 52 ) . In effect up to now we have 
thought that during rapid sliding stability has been assured by the contiguous parts of the 
glacier up- or down-stream, but here the intense crevassing of this very thin layer of ice has 
made it practically free and independent of the neighbouring parts . 

2. COMPARISON BETWEEN EARLIER THEORIES D UE TO WEERTMA N AND THE PRESENT AUTHOR 

2. I Historial survey cif the theories (the dates are those when the manuscripts were submitted to 
editors) 

1944. Koechlin (1944) seems to have been the first person to attempt to find the theoretical 
friction per unit area of a glacier on its bedrock! To do that he envisaged obstacles of height 
a, separated by a distance.\, and a compressive strength of the ice ac. His friction law can be 
written simply if we introduce the roughness r = a//.., as f = rac. This law is analogous 
to Coulomb's law of solid friction in the sense that the sliding velocity does not enter, but 
differs from Coulomb's law in that the normal pressure of the ice on the bedrock does not 
enter. 

1956. Weertman (1957), combining the melting and refreezing on two opposite faces 
of a protuberance of the bedrock and plastic flow around the protuberance, found a 
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pseudo-viscous fl ow law in which the friction 1 increased wi th sliding velocity II accordi ng to 

1 = C 1l2/ (n + l ) 

where n is the exponent in Glen 's fl ow law for ice . From this one deduces a relation giving u 
as a fun ction of the thickness of the glacier for a given slope of the form II = khll1 + J) h . The 
weakes t point in this theory is that it supposes that the ice behind the obstacle is subjected to 
a tensile stress of ~fA' la\ that is to say (putting Ala = 7 and n = 4.2) of about 25 bars ! 

16 July 1958. In the study of a flood wave on the M er de Glace (Lliboutry, 1958[b] ), I 
found a sta ti c fri ction (later called " quasi-sta tic") of 1.8 bar, and a dynamic friction of 
1. 0 bar. In this way I expla ined the j erky movem ents observed by Millecamps ( I956[a], Cb] ) . 

21 July 1958. I considered cavities down-stream from protuberances filled with water at 
a n unknown pressure (Lliboutry, 1958[a] ). T ogether with vVeertman's two processes, called 
A (melting a nd refreezing) and B (plasticity withou t cavi ta tion), one must now consid er a third 
process C (plas ticity wi th cavita tion) . I did not know how to estimate the cor responding 
frictionlc except for protubera nces very wide compared with their height and in the limiting 
case of very significant cavitation. It was found thatfc in this case varies as ll- '. From this we 
conclude tha t the to tal fri ction when there is slipping (kinematic fri ction) remains at a value 

10 = m (pgh- p)/2 
independen t of the speed of slid ing u. (In this expressionp was the p ressure in the water above 
atm ospheric p ressure, which in this a rticl e is called p - H. ) 

1959. I ela bora ted m y theory in d etail (Lliboutry, 1959), correcting a calcula ting error , 
this gave m efc = Cu- J / (n + 2) but did no t m odify the conclusions concerning the total fri ction 
f o. For the value of p I a lways had to fa ll back on hypotheses . 

196 1. Scheidegger (1961 , p . 268- 72) presented the two theories, again correcting the eITor 
in the 1958 papel-, a lthough he referred to the 1959 paper a nd not to the 1958 one. 

Sep tember 1962 . At the Obergurgl symposium, Weertma n (1962) criticized the hypo­
thesis of the forma tion of fixed subglacial cavities. T o do tha t he replaced the protuberances 
very wide compared with their height tha t I had envisaged by protuberances practically as 
wide as they are high, a nd he does not consider at a ll the existence of wa ter filling the cavi ties. 
I t was only a fter m odifying m y theory very profoundl y that he was a ble to refute it. 

Elsewhere in the sam e paper he considers a film of liquid wa ter between ice and rock, 
supposing it to stretch continuously from one extremity of the glacier to the other. In order to 
explain catastrophic slidings he admits that, when a glacier flood wave arrives, the fr iction 
rises to about 2 ba rs and this thi ckens the water film until it reaches some millimetres in 
thickness . If one accepts tha t at the scale of millimetres the roughness is of the order of only 
a bout '}r;, one finds sliding rates of several kilom etres per year (in Weertman 's theory in which 
wide obstacles a re not envisaged ) . In order to explain fluctua tions in sliding ra te, W eertma n 
proposes the existence of kinematic waves in the wa ter film . T hese explana tions ignore the 
existence of the hydraulic sys tem within the g lacier which is set up when wa ter is a bundant. 
Subglacial streams are not hypotheti cal : they a re tapped in the Alps to feed hydro-electric 
sta tions. 

2 O ctober 1963. K amb and LaChapelle ( 1964) reported labora tory experiments in which 
there is sliding b y melting a nd refl-eezing m ore rapid tha n tha t predicted by W eertman. 
T hey did not m ention m y theory. The a rticl e appeared in June 1964. 

27 J anuary 1964. I corrected W eertman 's calcula tion of melting and refreezing (Lliboutry, 
1964 [a] ) . The tempera ture variations a re three times larger, and the ice encloses liquid water. 
This leads to sliding by process A ten times faster, and seems to explain the results ofKamb and 
LaChapelle. 

6 February 1964. In a letter to the Editor of N ature published on 4 April (Lliboutry, 
1964[b] ), I explained catastrophic glacier advances using m y theory of sliding, into which I 
introduced m odifications. It is processes A and C which a re in competi tion , not processes B 
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and C. As a result of this the tota l fri ction, instead of being independen t of velocity varies as 
u- l (if we take n = 3) . 

14 February 1964. W eertma n ( [964[a] ) improved his theory of [957, envisaging in his 
turn the a ppearance of subglacia l cavities. H e supposed tha t the p ressure in them is atmos­
pheric pressure. This gives a different a nd sma ller friction, but still propor tional to U 2 ! (1I + 1). 

H e also attempted to improve his calcula tion, and to do tha t introduced protubera nces of 
differen t size, but limited to definite sizes in a geometric progression ( ... , A/ [oo, A/ [o, A, loA, 
IOoA, . . . ) . No information is g iven on the distribution law of size; W eertman simply adds 
the corresponding frictions, which implicitly implies tha t he superposes the two sorts of 
protuberances instead of juxtaposing them as he does (implicitly again ) in his 1957 theory. 
However wha tever model he has in mind he immedia tely abandons it again to return to a 
continuous distr ibution of protuberances. This is not sta ted in the text, but withou t it, i t 
would be absurd to envisage protuberances of a size A inversely proportional to the sliding 
velocity (W eertman, 1964[a], equation (8a) ),as the sliding velocity can itself vary continuously. 

In this paper W eertman again criticizes a theory which he a ttributes to m e, but which is 
only a bad caricature of mine. H e considers my mechanism C as a limiting case of his theory, 
whereas he ought rather compa re i t with the hypothesis he put forward in [96'2 to explain 
catastrophic advances (swamping the little protuberances) . H e was a t tha t time unaware of 
m y two no tes, which were in press. 

This a rticle appeared in O ctober 1964. I had received preprints, but I though t it 
sufficiently secondary no t to be worth modifying the corresponding cha pter in my book, which 
was a lready edited. 

[ M ay 1964. W eertma n ( 1964[b] ) gave his explanation of the experimental resul ts of 
K amb a nd La Chapelle (1964). 

'2'2 May [964. I sent to Masson & Cie., printers, the m anuscrip t of chapters [ '2 to 18 of m y 
Traite de Claciologie (Lliboutry, (965) . The galley proofs of cha ptel" 16, including the details 
of the new version of m y theory, were returned corrected to M asson on 8 September 1964. 
(An error in the calculations, which does no t modify the result qualita tively, was corrected a t 
the end of March 1965. ) Although Tome II of the Traite appeared in the bookshops only on 
14 D ecember 1965, the theories of W eertman (1964[a] ) and mine were thus worked out 
sepa rately a nd independently. 

'25 February 1966. At a meeting of the Section d e G laciologie of the Societe H ydro­
technique d e France, I presented a part of the present theory. The friction is calculated for any 
degree of cavitation wha tsoever, the bed is considered as consisting of m any superposed 
sinusoida l oscillations. 

The fi rs t term com es from process B, the second term is that in troduced in 1958, the third is 
that introduced in 1964-

'22 February [966. At the same time W eertman submitted to the editor of the J ournal oJ 
Claciology a criticism of my theory of 1965 (W eertman, (967) a nd sent m e a preprint. The 
principal accusation is still tha t it is incomplete, the pressu re in the su bglacia l cavities not 
being g iven by the theory. W eel"tman will not agree tha t this variable can be an independent 
variable, a fun ction of the am oun t of liquid water circula ting in the subglacia l hydrauli c 
system , as is explained on p . 648 of the Traite de Claciologie. H e a lso puts forward the idea of a 
superposition oflarge and sm all sine waves, but does not m ake any calcula tions with this mod el. 

9 M a rch 1966. During a glaciological m eeting at Zurich I reported new improvem ents to 
m y theory. Using certain conditions that a re generall y true, p can be expressed as a function 
of h, which a llows us to relate the ra te of sliding to the thickness of the g lacier. This question 
was reco nsidered , and m y law m odi fied , in June 1966. 
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2.2 Relation between notations 

Weertman (1964[a] ) 

Glen's law 
Thus 

T 

L ' 
L b , Lp, L d , L 

llr = L IL' 
SI, S2, S 

H 
D 

E = B an 
B 

JO U R NA L OF GLACIOLOGY 

must be replaced by 

Lliboutry ( 1965) 

f 
A 

a, b, l, (abl )l 
r = al)... 

VA, VB, V 

L 
K 

Y = Hrn 

B I3(n+ll /, 

In what follows the notation will follow that of Lliboutry (1965) . 

2.3 Sliding in the absence cif cavitation 
Sliding by simultaneous melting and refreezing over obstacles of height a, width band 

length l separated by distance A is given by 
otKCfA2 

VA = Lpabl' 

According to W eertman 01. ::::: I , whereas according to Lliboutry (1965) 

01. ::::: 1 + (::r l 
as a result of heat exchange with liquid water included in the ice. 

With Weertman's model of the bedrock (a ::::: b ::::: l ), it follows that 01. ::::: 3.5. For very 
wide obstacles, which according to the present theory control the movement (a = r)..., b = >.., 
l = )... /2), this equation leads to 

VA = (I + [.!!.] I) KC! 
2r Lpa 

A direct calculation using a sinusoidal profile leads to 

4KCf 
VA = --

mLpa 

which is of the same order of magnitude. The values found in this way for the sliding velocity 
V A are much lower than with the cube-shaped bedrock protuberances of Weertman; a 
twentieth if r = 110, and only a sixtieth if r = i s. 

Now let us compare the sliding velocities due to plasticity. According to W eertman, when 
no cavity is formed down-stream of the obstacle, 

01.' Bfn l)...2n 
VB - with 01.' ::::: 1 (called b by Weertman). 

- 2 n 3(n+I> /2(ab)n 

In m y theory I had the following differences from Weertman: (a) I considered that it was the 
widest protubera nces (b ::::: A) that controlled the movement, a nd (b) that ice deformed for a 
distance A/4 from the bedrock, and not just by a distance a (this would be rigorously true for a 
perfectly plastic material and a longitudinal bed profile that was saw-toothed) . This led to 

2 n- 3 Bfn )...n+2 
VB -

- 7Tn 3(n+ ll 12 an+,' 

To reconcile this with Weertman's formula one would have to put 

, 
01. 

2 2n- 3 bn 

7T n la)...n - 2· 
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As Weertman puts a = b = I = rA, with n = 3, 

01.' = 0.26r. 

In this case as well I obtained a sliding velocity much lower than Weertman's; a fortieth if 
r = 110 and a seventieth if r = ·is. 

For sliding without cavitation , Weertman finds (1964[a], equation (8b)) 

(
01.01.' KCByn-J) !(f) (n+J) /z 

VA+ VB - 2 -
- 3(n+ Il / 2 Lp2 n kr2 

with y = l/( abl )! and 2.31 < k < 3-4-
Thus for n = 3 

1(01.01.' KCB)! P l 
VA+V B = k' 2Lp (abl )1 r4 ' 

With I/( abl )! = 1, 01. = 1,01.' = I , this becomes 

1 (KCB)!P 
VA+V B = U = k2 2! Lp r4 ' 

N umerically, u = 80 m/year for r = i s andf = I bar. 
My theory (Lliboutry, 1965), on the other hand, leads to 

VA+V B = -.±,(K<
L
CB) !f ,2, 

37T" p r ) 

that is to say vVeertman 's value multiplied by 4V2k' r/37T2
• 

Even with Weertman's values (k = 2.3 1 and r = 1's ), my calculation gave only an 
eighteenth of the velocity : for f = 1 bar, U = 4-4 m /year. Such a velocity is obviously 
inadequa te. W eertman did not com e across this difficulty because he did not consider 
protuberances wide compared with their height. But they exist! 

2.4 Sliding with cavitation 

Contrary to what one might think from fig. 16.20 of Lliboutry (1965, p. 645), it is not the 
fil'St hypothesis ofWeertman (1962) that has to be compa red with my " process C", but the 
second hypothesis of the same paper. I considered in effect a swamping of the protuberances, 
more effective the la rger the velocity, a swamping which reduces the fri ction. 

According to Weertman (1962, p . 36, equation ( ro)) 

[ 
Bfn ] I [ 12Wif] ! 

U = 3In + J) / 2 r 2n 2n ]LpgOl. 

where fJ. is the viscosity of water (=5.7 X IO- J6 bar year) and x is the distance from the head 
of the glacier. If n = 3 this reduces to 

U = B 3/
2
f9 /

2 
( 3wif ) '/2 

216r9 2]LpgOl. ' 

or, if C is inserted as a constant which only depends on the properties of water and ice, 

f = Crr. 8( 0I. /x)o ., U O • 2 • 

In the theory in Lliboutry (1965, p. 652, equation (37) with the values of CA and Cc 
given on p. 651 ) one would have on the contrary 

U = (27TP (KCB) l (pgh - p)3. 

3 Lp f 
In this paper we shall see that, under certain conditions, (pgh - p) = N is proportional 

to pgh = f /OI.. One is then led to 
f = COI.!. ; uo.,. 
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Thus instead of being strongly dependent on the roughness of the bed, the sliding velocity is 
independent of it. This is much more logical because when the hollows are full of water 
their depth does not affect the sliding. 

3. SLID[NG DUE T O PLASTICITY ON THE SINUSOIDAL MODEL 

3. [ Friction in a sinusoidal model in the absence rif separation between ice and rock 

Let us first calculate the friction for a glacier bed which has only got bumps of one size 
regularly spaced a nd wide compared with their height (the term " bumps" used by skiers for 
the obstacles they have to overcome on pistes seems to me more appropriate than " pro­
tu berances") . 

We can suppose that the flow of ice around such an obstacle takes place in a vertical plane, 
that is to say we treat it as a plane problem . The fri ction is then practically the same if the 
bumps are arranged irregularly, or if they are aligned in rows perpendicular to the flow, 
giving to the model of the bedrock chosen the appearance of a wash-board. 

It is evidently completely inadmissible to introduce in such a wash-board model the little 
transverse trenches extending from one side of the glacier to the other. The figure published 
in Lliboutry (1959, p. 256 and reproduced by Scheidegger (1961 , p . 268) explains sufficiently 
clearly that the flow may be plane even if the bumps retain a finite width. 

We now make a calculation for a well-defined angular frequency w = 21T/A and look for' 
the corresponding friction fw. W e then envisage the real bed where all frequencies are 
present. We therefore adopt as longitudinal bed profile 

z = la cos wx. ( [ ) 

The bumps considered here are perfectly smooth and only support normal forces. It is 
only the asymmetry of the forces, the fact that they are larger on the uphill faces, that, when 
considered on the large scale, appears as a uniform friction . 

In this section we are only envisaging plastic deformation of the ice without introducing 
supplementary sliding due to melting and refreezing. For this plastic deformation we adopt 
Glen's law with n = 3, that is to say with the effective shear variables 

y = E T 3. 

If the principal stresses are aI, a, = aI , and a3, and the corresponding strains EL = - - lE3' 

.0 , = - t E1' and .03, then 

y = 31 E3' ) 
T = laL - a31/31, 

E3 = E la, - a313/9· 

For temperate glacier ice E has the value o. [64 bar- I year- 3, but for ice very much riddled 
with liquid water such as is found very close to the bed of a glacier one may perhaps have much 
larger values, the more so if transient creep is important. 

In the absence of separation we can suppose that the normal pressure that the ice exerts 
on the bedrock fluctuates sinusoidally about a m ean value (pgh cos rx + H ) with a phase 
difference of A/4 compared with the relief (see Fig. [ ) 

a3 = pghcosrx+H- ~asinwx. 

On a scale large compared with the wavelength, we get the fri ction 
A A [J dz awl'1a J 

fw = :\ a3 dx dx = ~ sin' wX dx 

o o 

or, putting a/A = r (the roughness for the frequency w) 

f w = t ml'1a. 
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H + gh C~(){,_ 

x 
Fig. r. Pressure of ice against rock ill the absence of cavitation. Vertical hatching where there is excess pressure. Horizontal 

hatching where pressure is reduced 

There are two ways of calculating 6.a, the excess pressure on the uphill faces or the 
depression of pressure on the downhill ones: 

(i) "Ve can say that under the action of an average value of lal - a31 equal to 26.a/7r, the 
ice rises to a height a while Rowing over the uphill face, that is to say in a distance of 
VI (in Llibou try (1965) the factor of 2/7r was omitted) . T hen we can estimate the 
zone within which I a, - a31 continues to have a high value as )"/4, by analogy with the 
case of perfect plast icity. I t then follows that, if we pu t v for the rate of sliding 

E, = ~~~~ = 8).,~v = ~ (; 6.af, 

or _ (97r 3 av)! 6.a -- B)'" . 

(ii ) Alternatively we can say that under the action of a maximum value of la ,- a31 
equa l to 6.a, the bottom layer of ice acquires a maximum inclination with respect to 
the x-axis equal to 7ra /).,. The velocity pa rall el to the x-axis being approximately v, 
tha t parallel to the z-ax is must be 

W = 7rav/).,. 

I[ we now suppose that the principa l compression is always produced within a thick­
ness '\ /4, then 

(5) 
a nd it follows that 

_ ( 3
67rav)1 ~a - B).,2 . (6) 

These two m ethods are no t equivalent because the Row law of ice is not linear. T he two 
va lues they lead to for the fri ction differ by a factor of (7r/2)J = 1.35, which gives us an idea 
of the possible errors. W e shall adopt Equation (6) because the m ethod used can be generalized 
for any degree of cavitation . The fri ction then becom es 

= 7rr( 367rav) !. = (97r4) ~ (1"5 v)l 
f ,u 2 BN 2B a 

In the metre- bar- year sys tem of units, and with B = O. I 7 we obtain 

(

1" 5 v) j 
f ,u = 13· 7 --;; bar. 
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3. '2 Relation between cavitation and friction on the sinusoidal model 

An important improvement to my earlier theories which is introduced here is the calcula ­
tion of the friction for any degree of cavitation, approximating to a realistic hypothesis: the 
ice separates from the rock at the point with coordinates (xc, zc) and recontacts the bed at 
the point with coordinates (Xc, ..(c), as shown in Figure '2. W e will suppose that the recontact 
point is situated on the tangent at the point of separation. 

Fig. 2. Calculation of frictionfw 011 the sinusoidal model for any cavitation 

The cavitation will be defined by a parameter s, the ratio of the area where the ice 
effectively touches bedrock to the total area. The roughness a/A being by supposition small , 
we can write 

s = (xc+ A- Xc)/A = [-(Xc - Xc )/A. (8) 

On the other hand Xc and Xc are related by the equation 

cos wXc - cos wXc 
__ -:-:'--__ ---C = - w sin wXc, 

Xc - xc 
which, using Equation (8) leads to 

'2rr ( I - s ) + sin '2rrS 
cot wXc = . 

I - cos '2rrS 
(9) 

On the other hand, when there is cavitation, the normal pressure on the bedrock is no 
longer given by (3), as the cavities under the ice are filled with water at pressure p. This 
pressure p can be at most equal to the total pressure exerted by the ice and the atmosphere 
(pgh cos IX due to the glacier and H due to the atmosphere), otherwise the glacier will float. It 
may drop (at least for transient states following on some increase that occurs in velocity) down 
to the saturated vapour pressure of water at o°C., i.e. practically zero. In this latter case the 
glacier adheres to the rock by suction. For the moment we will assume that this pressure p is 
given; the factors which determine it will be discussed in section 7. Following a suggestion of 
Haefeli ( [966), this pressure p will be called the interstitial pressure, by analogy with that 
considered in rock mechanics. 

We now put for U3 the following expression (Fig. 3) 

U3 = P for Xc ~ x ~ Xc, 

{ ( 
xc+ Xc)} U3 = A - Pcos w x - --'2-

This expression reduces to Equation (3) when cavitation ceases (xc = Xc = A/4). Con­
tinuity dictates that 

A = P cos {tw (Xc - xc)} + p. 

According to (8), tw (Xc - xc) = rr ([ - s). Thus for Xc ~ x ~ xc + ,\, 

U3 = p- P [cos 7TS+ CoS {w(x - Xc~xc)}]. ( 10) 
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:> 

~~ij>~ -- .- I 
I i ' i , I 

0-3 ' I,' 
I i 

Ht f9h cos. ()(, 
p 

x 

/ \ ~(JCOS1t"S / \ 

-.-/-.-.-.-l.-.---I------~--
/ \ / \ 
/ \ / \ 
/ M\ / \ 
/ \ / \ 

-// \J \,-
Fig. 3. Pressure of ice against rock when there is cavitation. Compare with Figure [ 

33 

P will be determined by the fact that the component parallel to the z-axis must on average 
be equal to the sum of the pressure of the ice pgh cos ex and of the atmosphere H. As we have 
supposed that a ~ A, this means that to the second ord er in r 

x ,+" 

PA - P f [COS7TS + COS{W(x - Xc ~xc)}] dx = pghcosex+ H. 

Whence, putting 

pgh cos ex + H - p = N (the resultant pressure), 

7TN 
P = -,.-----

sin 7TS - 7TS cos 7TS 

(II ) 

The x component of the pressure a3 gives the mean frictionfw corresponding to a sinusoidal 
bedrock. The constant term p present throughout leads to 

f dz 
P dx dx = P[Z(A) - Z(o)) = 0, 

o 

and there remains, putting 

x,+,\ 

wfo f [ {( xc + xc)}] iw = . cos 7TS + COS w x- --- sin wX dx. 
sm 7TS - 7TS cos TTS 2 

x, 
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The second term of the integral can be transformed using the formula 

sin a cos (a - b) = t [sin b+sin (2a - b)], 

fw [ - cos 1TS cos WX + 2WX sin {tw(Xc + xc)} - t cos {W (2X- t(Xc+ xc))}] ; ,+A 

sin 1TS - 1TS cos 1TS 

If we replace Xc by Xc+A(I - s), and tw(Xc + xc ) = tw(Xc - xc ) + wxc by 1T -(1TS - WXc), 
the numerator can be re-written 

[-cos 1TS cos wx+twx sin (1TS-WXC) +t cos (2WX + 1TS - WXc)]:: _AS 

= cos 1TS [cos (21TS - WXC ) - cos wxc] + 1TS sin (1TS - WXC) + i cos (1TS+ WXC) -t cos (31TS - WXc ). 

Transforming the differences between two cosines, we finally obtain the reduced friction 
fw /fo = cp as 

fw [1TS-t sin 21TS] sin (1TS - WXC) 
<P - - - "------"-,,.--------''---'---

- fo - sin 1TS - 1TS cos 1TS . 

In this expression wXc is given by Equation (9). A table of values IS given as Table I 
below, and the function cp (s) is plotted in Figure 4. 

TABLE I. 

wXc 

4> =/ 1/0 

VALUES OF THE REDUCED FRICTION'" FOR VARIOUS VALUES OF THE CAVITATION PARAM ET ER S 

I 

90° 
0·75 

60° 17' 
1.161 

0.60 0.50 1/3 0.25 1/6 
43° 13' 32° 29' 16° 32 ' 9° 56' 4° 41' 

1.285 1.325 1.233 1.079 0.834 

o~ ________ ~ __________ ~ 
1 0.5 .... o(~--­

s 
o 

0.10 
1° 45 ' 
0.576 

Fig. 4. Reducedfriction as afimctioll of cavitation on the sinusoidal model 

0.06 0.04 
38.5' 17. 2' 
0.352 0.24 1 

Cavitation begins when the friction f reaches the value fo. The new and remarkable fact 
is that before it decreases the friction begins by increasing. It exceedsfo by some 33 per cent 
for a cavitation of about a half (s = 0.48). 

When s is near to unity (incipient cavitation), putting I - s = E, Equation (9) leads to 

wXc ::::: 1T/2 - 21TE /3 . ( 15) 
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The logarithmic d erivative of </> 

d</> /ds 7T - 7T cos 27TS 7T - d( wxc) /ds 7T2 s sin 7TS 
-- = + -----;-----:-

</> 7TS- t sin 27TS tan (7TS- wxc ) sm 7TS - 7TS cos 7TS 
now reduces to 

When S is near to zero (intense cavitation), Equation (9) leads to 

wXc :::::: 7TS2 

a nd Equation ( 14) to 
</>:::::: 27TS( r- s). (s ~ I) 

35 

( r 6) 

The fri ction in relation to the area effectively in contact, ],u!s, becomes equa l to 27TJo. It 
becomes independent of the velocity as though the ice were perfectly plastic. 

Note that for s very small, Equation (12) gives P:::::: 3N/7T2 s3. Putting x = .\ -(S.\ /2)+ X', 
we finally find in the area of actual contact a parabolic variation of the excess pressure 

a3 ::::::p + 3~Tr - (~:JJ. (s ~ I) 

3.3 Cavitation as aJunction of the sliding velocity when only plasticity is present 

In Lliboutry ( r 965), the first calculation of section 3. I was applied to the case of strong 
cavita tion, replacing the whole bump by its summit alone. In doing this I introduced a n error 
which is more and more important the larger the cavitation becom es. ' '''hen the ice only 
touches a tiny summit of th e bump, according to this reasoning the stresses are only increased 
for a tiny region above. H owever the stresses near the point of contact becomes infinitely 
great as the area of contact becomes infinitely sm all, and it is impossible for a stress to be 
ex trem ely large in an extremely tiny volume, since the space derivatives cannot become 
infinite. An extremely large stress spreads into a ll the surrounding space. 

It would therefore be better to make the calculation considering the situa tion on the roofs 
of the cavities, where the stresses never tend to infinity. Furthermore, the closure of a circular 
hole in ice is a problem for which Nye ( 1953) has given a n exact solu tion, so that we a re not 
dealing with the completely unknown. 

T o estimate the slope of the roof, we again suppose that the stresses retain the sam e 
magni tude for a distance .\ /4 above the roof. The principa l stresses in this region are 

al = pgh cos OI. + H, a , = pgh cos OI. + H, a, = p. 
Thus I aI - a, l = N, and the flow law for ice, Equation (2), g ives us the rate at which Ice 
descends towards the bed rock 

( r 8) 
The horizonta l velocity of the ice is v, and the slope of the roofs of the cavities w/v. Let us 

equate this slope to that at the point of separation, - taw sin wXc = - m sin WXc, then 

Now if we put 

BAN' 
-6- = 7Tr sin wXc· 
3 v 

BAN ' BaNl 
vo = -- = --

367Tr 36m 21 

or, numerically, if we put B = o. 17 bar- 3 year- ' : 

Vo = 1.5 X IQ- JaN 3fr'; 

( 19) 

( 19' ) 
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Vo is the velocity at which cavitation begins, and the frictionIo corresponds to it. Equation (6) 
can therefore be written more simply in terms of reduced variables as 

e/> = lw/Io = (v/vo )t (v ~ vo) ( ~20 ) 
when v ;;?= Vo 

v 

sin WXc Vo 

sin wXc being related to s by Equation (9) the problem is solved, but the analytic expression 
fw(v) is not simple. The values of the reduced velocity V = vivo for various values of the 
parameter determining the cavitation s are given in Table 11. Together with Table I this gives 
e/> (v/vo), shown in Figure 5. The same function is shown plotted logarithmically in Figure 6, 
together with s, which is plotted as the interrupted curve. 

In the early stages of cavitation (s = [-- E) Equations (2 [) and ( [ 5) tell us that 

V = vivo = [ /cos (27TE/3), 
and hence that dV/dE::::: 47T2E/g. However according to Equation ( [6) de/> /dE = 87T2E/g, 
thus we deduce that 

de/> de/> dE 
dV = dEdV = 2. 

The logarithmic derivative of cj> (v/Vo) , i.e. the slope of the solid curve in Figure 6, thus increases 
suddenly from t to 2 when cavitation begins. Figure 6 shows however that a straight line of 
slope 0.4 quickly becomes a better approximation. 

For s very small, wXc ::::: S2 = vo/v. Thus 

s ::::: (~) ! = _[ (BaN 3) l, 
7TV 6m v ( 22 ) 

TABLE II. VALUES OF THE R EDUCED VELOCITY V FOR VARIOUS VALUES OF THE CAVITATION P ARAMETER S 

S 0.75 0.60 0.50 1/3 0.25 1/6 0.10 0.06 0.04 
V 1.152 1.460 1.862 3.5 15 5·797 12.25 32.74 89·34 199·9 

(1- s) 

Q5,4+----~--~--------------~--------------------------~------------

oL---~--------------------~------------------------~--------------
10 

Fig. 5. The variation of fw (friction on the sinusoidal model ) as a furzction of sliding velocity v when sliding is due solely 10 
plasticity. fo = !rrrN, Vo = BaNJ/36rrr' 

https://doi.org/10.3189/S0022143000020396 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000020396


THEORY OF SUBGLAC IAL CAVITATION AND GLACIER SLIDING 37 

Q2 

O.l+--t---t--H-+-f----+---4-+--+-+-H+t----+-----4'-++++-H-4----+-
v • 

Fig. 6. Approximate eX/Jressions for fw when the sliding is solely due to plasticity 

and 

SO that 

or, numerically, in the system of units metre- bar- year and putting B :::::: o. I 7, 

s:::::: 0.02I8 (aN3Ir2 v)!, (22' ) 

J:::::: O.216N5/2 (a/v)'/2. (24' ) 

For high velocitiesJ", decreases as v-~ and not as v-! (Lliboutry, 1959) or v-! (Lliboutry, 
1965, p. 65 I). Other approximate laws valid in different regions are shown in Figure 6. 
They will be useful in the approach to a more exact model of the bedrock. 

4. SLIDING DUE TO PRESSURE MELTING ON THE SINUSOIDAL MODEL 

4- I Heat sources and heat transfer at the bottom of a glacier 

The increase of stress on the uphill side of obstacles, the cause of the frictional force, does 
not only cause the plastic deformation and sliding calculated above; it also causes the ice to 
melt above the obstacle, and so produces a supplementary sliding. It is the amount of heat 
arriving at the uphill face which allows the ice to melt and so determines the sliding. This heat 
can have several origins: 

(i) Geothermal heat reaching the ice by conduction; 
(ii) H eat produced by the plastic deformation in the basal layers; 

(iii) Heat liberated by liquid water refreezing on the downhill faces of the bumps or on the 
roofs of subglacial cavities. 

It is easy to see that the first two terms are negligible. Thus for (ii) the heat produced by plastic 
deformation is fw vi] calories per unit time and area, ] being the mechanical equivalent of 
heat. In the most unfavourable case, strong cavitation, the heat produced over a length ,\ is 
concentrated within As. The corresponding melting velocity on the top of the uphill faces is 
then w' = Jw vl]Lps, or, taking account of Equation (23), 

I 27Tfo v 
W = ]Lp. 
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But ]Lp = 3000 bar, whereasJo is of the order of I bar. This melting therefore makes the ice 
d escend towards the rock at a speed of only w' = v/soo, whereas it moves forward with the 
velocity v. 

As for heat transfer, this can happen in several ways: 

(i) By conduction through the rock or through the ice; 
(ii) By solid convection, the ice which has been cooled on the uphill face of a bump being 

replaced by warmer ice; 
(iii) By liquid convection , as a film of water circulates from the upstream face to the 

downstream face carrying calories with it ; 
(iv) By simultaneous melting and re freezing, thanks to the liquid wa ter content existing 

in the ice. 

Process (i) is much more important than processes (ii) a nd (iii) . The heat flux transported per 
unit area in unit time by conduction is K d8/dx, or about 2K 118/10.. if 118 is the temperature 
difference between the uphill a nd downhill faces. The heat transport by convection in the 
so lid will be cpvl18 where c is the heat capacity of ice and p its density. Their ratio is cpvA/2K 
= vA176 if v is expressed in metres per year and A in m etres. This is very small except for big 
protuberances, protuberances for which sliding by melting and refreezing is in any case 
negligible. 

As for the water film, its outflow per unit width is pva (or of the order of pva in the cavita­
tion case) . It thus transports c'pval18 calories where c' is the heat capacity of water. Expressed 
as a fraction of the conduction term , it is of order c'pvaA/2K. This is equally negligible for 
small bumps. Also this water which finds itself at a temperature below the melting poin t 
under the pressure p when it enters the cavity, only freezes in very small amounts at the actual 
point of entry. 

As for process (iv), it ha rdly enters a t all in the a bsence of cavitation, as the intense lamina­
tion of the basal ice facilitates the removal ofliquid water: Carol (1947) observed its exudation 
against the rock. Thus more intergranular water should disappear above the bumps tha n 
reappears below and the proces. cannot take place. On the other hand, when there is cavita­
tion, it is possible that heat transfer by melting and refreezing of inter granular water may occur. 
In effect the refreezing which ta kes place downhill against the rock may isolate liquid water 
from the rock, and, in a discontinuous but uninterrupted way, pockets of liquid water may be 
trapped in the ice as shown in Figure 7. 

4.2 State of the problem 

We shall calculate the sliding v' due to simultaneous melting and refreezing, allplasticitybeing 
excluded. W e shall see that this case occurs when the size a of the obstacles is sufficiently small. 
With this mechanism we can also have or not have cavitation, but the cavitation will not be 
regular as in the case of plastic d eformation . The re frozen ice which forms against the rock 
can only leave it intermittently as suggested in Figure 7b. The model adopted in section 3. 2 
and represented in Figure 3 is only an average, idealized case, and the Equations (8) to ( [ 2) 
derived there can in this case only be considered as approximate estimates of the average value. 
H owever we can still say that the m ean frictionJ o always has a maximum equal to I .33Jo for 
S = 0.48. 

On the other hand Equations (6) and (7) and the whole of section 3.3 concerned with 
sliding velocities are not valid at all in this case. In particular, sepa ration occurs at a velocity 
v~, and no longer at Vo as given by Equation ( [9) . 

To obta in the sliding velocity one has to calcula te the heat flux which flows from the faces 
with lower pressure to those with higher pressure, and then write down that the volume of ice 
m elted per unit width and time is equal to the sliding velocity multiplied by the height of the 
obstacle. 
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@ 

@ 

Fig. 7. Flow of ice in the absence of plasticity with a bedrock of sinusoidal profile. a. Without cavitatioll. b. With strong cavitation 

W e note that, for protuberances of given transverse cross-section, the sliding will be a 
minimum when the width is large compared with the height . In effect in this case the heat has 
to flow in vertical planes, whereas for narrow protuberances heat can converge from both sides 
to the uphill face. Thus it is protuberances wide compared with their height which most 
oppose the flow and which therefore have to be considered in our calculations. This remark 
is the justification for continuing to restrict consideration to the plane problem. 

4.3 Sliding by melting and tifreezing in the absence oJ cavitation 

W e shall again consider our bedrock model having a longitudina l profile of sinusoidal 
shape z = ta cos wx, and supposing there to be no cavitation . According to Equation (3) 
the overpressure is - !1a sin wx and the corresponding temperature variation 

o = -C~asin wx 

where C is 0.0074°C jbar. 
In the rock 0 satisfies the equation 

'P O = o. 

At infinity in the downward direction (I z I = + CIJ ), 0 = 0 , and on the bedrock e has 
the value given above. The problem to be solved is thus a classical Dirichlet equa tion . For 
small roughnesses the bed can be considered as occurring at Z = 0, and the solution is 

o = -C~a exp (-w l z l) sin wx. 

Above the bed , in the temperate ice, the temperature no longer satisfies Laplace's equation ; 
thanks to infinitesimal melting and refreezing it adjusts itself to the variations of stress, 
which a re not harmonic because the flow law of ice is not linear . However to obta in an order 
of magnitude we can consider the sam e variation . 
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The heat flux arriving per unit width between the points x and X+ dXl ; 

(OB) do.. = (K b+ Ki) OZ 0 dx = (K b+Ki) C~a w sin wX dx 

where Ki is the thermal conductivity of ice and K b that of bedrock. 
From this the resulting melting per unit time, measured perpendicular to the surface, is 

, dQ (Kb+Ki ) C~awsinwx 
w = -- = (26) 

Lpdx Lp 

W e note that the slope of the bedrock is also proportional to sm wx. The resultant 
sliding is thus 

v' = w' 2(K b+ K i ) C~a 0.. 
taw sin wX Lpa Lpa 

where Q has been written for the total heat arriving on the uphill 
unaffected, and therefore the friction is unaffected as well. 

The friction is given by (4), so Equation (27) can be written 

4 (K b+Ki) Cfw 
v' = ----;0---"'-

7TLpra 

face. The stresses are 

In particular, cavitation begins when the pressure in the centre of the downhill faces, 
(H + pgh cos (X- ~a) reaches the value p, that is to say for ~a = N. The corresponding 
sliding velocity is v~ given by 

Numerically in the metre- bar- year system, Ki = 0.0053 cal/cm deg sec = 16.8 Meal/m 
deg year, Lp = 71 Mcal/m 3, C = 7.4 X 10- 3 deg/bar, so Ki CfLp = 1.75 X 10- 3 m 2 /bar year. 
If we suppose K b = K;, Equation (29) reduces to 

fw = 224rav' bar, 

v~ = 0.007N/a m /year. 

The friction corresponding to v~ isfo = tmN. We can therefore write, in terms of reduced 
variables, 

V' = v' lv~ = j~/fo = {>. 

4.4 Sliding by melting and refreezing with cavitation 

When cavitation appears, the pressure of the ice against the rock varies according to a 
more complicated law given by Equation ( 10) and shown on Figure 3. With a convenient 
choice of origin 

a = p - P cos 7TS + P cos wX 
a = p 

- t'\S ~ x ~ ps, 
!'\s ~ x ~ - t ,\s. 

To solve the Dirichlet problem which arises from the temperature distribution, this 
variation has to be broken down into a Fourier series. Some distance from the bedrock only 
the fundamental component matters, and its amplitude ~a is given by 

2 f P (27Ts - sin 27TS) 
~a = X (a- p) cos wxdx = w'\ . 

P is given by Equation (12). Whence, taking account of Equation (14) 

N(7Ts- tsin 27TS) fwN 
~a = = -::--:-::..,.::-------:-

sin 7TS - 7TSCOS TTS fosin (7TS - WXC ) 
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!:!.a = . ( ). 7Tr sin 7TS - WXC 

With this new value of !:!.a, the above calculation is a lways valid at a certain distance above 
the bedrock. When, however, we approach it, the lines of heat flux are perturbed, but, 
except perhaps for extreme cavitations, the total amount of heat going into the zone with 
over-pressure is not altered. 

The cavitation only reaches the uphill sides if wXc < 7T, or, taking account of Equation (8), 
if 

(7TS - WXC ) ~ 7T - 7TS. 

We find that S ~ 0.628. The condition can also be written 

sin (7TS - WXc ) ~ sin 7TS. 

Equation (27) remains valid , with the modified value of !:!.a. Equation (28) is replaced by 

, 4 (K b+ Ki) Cfw 
v = 7TLprasin (7Ts - wxc)' (32) 

and Equation (30) by 
v' lv~ = 4> lsin (7TS - WXC) · 

When sin (7TS - WXc) < sin 7TS, the ice only touches part of the uphill face. The irregularity 
to be overcome is then 

ta-Zc = ta ( I - cos wXc ) = ta(I - cos 7TS ) = a sin' 7TS, 

Equation (28) in this case has therefore to become 

, 4(K b + Ki ) Cfw 
v = 1TLpra sin' TTS sin (7TS - WXC)' 

or, in terms of reduced variables, 

,v' 4> 
V =;;; = sin2 7Tssin (7TS - WXC)' 

In order to suppress a discontinuity, it is better to use Equation (33) for S ~ 0.5 instead of 
S ~ 0.628. 

TABLE Ill. VALUES OF R E DUCED FRICTION'" AND REDUCED VELOCITY V' FOR VARIOUS VALUES OF THE 
CAVITATION PARAMETER S 

S 

'" V' 

0·75 
1.161 
1.205 

Of, numerically, 

0 .6 
1.285 
1.421 

1/3 
1.233 
2·39 

0.25 
1.0 79 
3.76 

S = 0.038 (Nlav' )1, 

f w = o.24(Nlav ' ) ~ bar. 

1/6 
0.834 
7.80 

Figure 8 shows some approximate laws which will be useful later. 

0.06 
0.352 
56.8 

0.04 
0.24 1 

12 7. 2 
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1-05 <f -2.83 (~) . 
Vo 

Q2 

O.l+--+--+--H++-------1f--+--+----1f-H-+++---~.____+-+__+_+_+_+_+_t__:__---t-
10V~ ~ 100V~ 

Fig. 8. Approximate expressions for f w when the sliding is sole!.;' due to pressure melting 

5. TOTAL SLIDING ON THE SINUSOIDAL MODEL 

5. I Addibility of sliding velocities 

In previous papers I have calculated the total sliding, which in this paper will be called u, 
by adding the sliding due to plasticity (here called v and not VB or Vc according to whether 
there is cavitation or not) and the sliding due to pressure melting (here called v' and not VA), 
i.e. 

u = v+v' . 

Weertman (I g64[ a] ) has done the same addition, but it is not obvious a priori that this 
procedure is correct, as we are dealing with non-linear phenomena. We will therefore examine 
the question a little more deeply. 

It is possible to reason as follows: The uphill surface of a bump is an " ablation area". 
Flow lines terminate there, a flux of ice disappears (it becomes a flux of water which flows to 
the other side as a very thin water film ). The downhill surface of the bump is an " accumula­
tion area". An ice flow appears there; flow lines are created. Everything therefore occurs as 
if the bottom layers of ice passed through the bump, that is to say as ifits height were less by S 
(cf. Figure g, where the model of the bumps that has been taken is not sinusoidal but the kind 
considered by Weertman ). In fact this is so from the point of view of the flow but not from the 

Fig. 9. Flow of ice round a Weertman protuberance when plasticity and /Jressure melting act simultaneously 
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point of view of the stresses, which are just as high as before, since they do not simply have to 
enable the ice to get over an irregularity (a- o), but also have to squeeze the bottom layer, of 
thickness 0, until it can cover the whole original surface of the bump. 

A simple and correct argument is the following. 
At the middle of the downhill surface of a bump, whether there is cavitation or not, the ice 

moves downward at a velocity w due to plasticity, whose magnitude is given by the following 
equation deduced from Equation (5) : 

w = B (/::;.a ) 3 ).. /36 (37) 

and a velocity w' due to melting, whose magnitude is given by Equation (26) as 

2(K b + Ki) C/::;.a7Tf 
w' = --'----::,.---'----

Lpa 
But /::;.a is related to the friction by Equation (31 ) 

2fw 
/::;.a = . ( ). nr SIn ns - wxc 

In this equation we must put Xc = in when there is no cavitation. When there is cavita­
tion , sand wXc are related tofw by Equations (9) and ( 14) (cf. Table I ) . Thus /::;.a is a function 
offw in which the velocity does not enter. It is the same for the slope of the ice downhill from 
the bump, - nrsin wXc. 

For a given frictionfw we therefore have 

. w w' w+ w' 
- nrSln wXc = - = ---; = --,. 

v v v+v 
When the two processes act simultaneously the roofs of cavities descend at a velocity 

(w+ w' ). The sliding velocity must then be (v+v') which was what we wanted to prove. 

5.2. Total sliding in the absence of cavitation 

Adding the velocities of sliding given by Equations (20) and (30) we get the total velocity 

U = v+ v' = vo q,3+ v~ q,. (38) 
In order to obtain reduced variables, let us introduce the two quantities uJI. and aJl.' 

independent of a and defined by the eq uations 

or 

uJl. laJl. = 2vola = BN3/ 18nr" 

uJI. aJl. = 2 V~ a = 4(K b+ Ki ) CN/Lp, 

U _ N
2
{2 (Kb + Ki) CB} ! 

JI. - 3r Lp'TT ' 

= 6r{2 (K b + K i ) en}l 
aJl. N LpB . 

Numerically, in the metre- bar- year system , and putting Kb :::::: Ki and B = 0.17, 

uJI. = 0.65N2 / roor m /year, 

aJl. = 2.r6rIN m. 
Equation (38) can now be written 

UJl.U q,2 = H :: + :;]. (43) 

It is easy to trace contours of the surface q, (u, a). It is convenient to take reduced 
logarithmic coordinates for U and a. Putting log (uluJl. ) = X and log (alaJl. ) = Y (using 
logarithms to base IQ), the con tours satisfy the equation 
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Corresponding curves with c/> = constant shown on Figure 10 are all constructed from 
the limiting curve for c/> = I 

by a simple displacement. 
With increasing velocity cavitation appears (c/> = I ) first at the point X = I, Y = I. 

Put another way, when u reaches the value u'l- (i.e. as we shall see, for a velocity of some 
metres per year), separation begins in places on the bed where the undulations have amplitude 
a'l- (i. e. as we shall see, some centimetres) . 

The ice cannot succeed in detaching itself from the largest bumps, as the stresses are not 
large enough. Melting and refreezing ensure that the smallest bumps and protuberances 
mould themselves into the ice. 

5.3 Total sliding with cavitation 

When there is cavitation, if plasticity alone occurs, Equation (2 I) shows us that vivo is a 
universal function (i.e. one in which no other parameter enters) of C/>, which we shall call V(c/» 

vivo = rlsin wXc = V(c/». 

0.01 . 0.1 10 100 1000 

Fig. 10 . Friction on the sinusoidal modelfw as afunction of the total sliding velocity u and the amplitude of the bumps a. Curves of 
fw /fo = '" = constant 
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If pressure m elting alone occurred, we would have 

v' jv~ = 4> jsin (7TS-WXc), [ ~ s ~ 0.5 

v' j v~ = 4> jsin'1Tssin (7TS - WXc). 0.5 ~ s 

W e sha ll call this universal function V' (4) ) (note that it is not the derivative of V(cp ) i) . 
We can now write 

u = v+ v' = Vo V( cp)+ v~ V' (cp ), 

or, using the quantities u". and a". defined above, 

u". ( ;V')! = ;{:"'(:r+ a:(~ ')l 
or, in logarithmic coordinates, 

10(X - IOg IVV')! " ) = t{ I O(Y- Iog (V' / V)! I2 )+ I O-(Y- Io g (V ' / V)! 12)}. 

Curves of equal reduced fri ction can be constructed from Equation (44) by a displacem ent 
(log (VV' )!, log (V' j V)!) . The components of this vector are calculated in Table IV. For s 
very small , V(4) ) = 41T jcp2 and V' (cp ) = 8jcp2 . Thus (V'fV )! tends to the finite value (2j1T)1 
and ( VV' )~ to (3 21T)!jcp' or about IOjcp2. 

TAilLE IV. PARAMETERS DETERMINING THE CURVE R ELATI NG R EDUCED SLIDING VELOCITY AND REDUCED 

AMPLITU DE FOR VARIOUS VALUES OF THE CAVITATION P ARAMETER S AND R EDU CED FRICTION cP 

S I 0.75 0.6 0.5 1/3 0.25 1/6 0. 10 0.06 
cP I 1.161 1.285 1.325 1.233 1.079 0.834 0.576 0.352 

log ( V V') j 0 0.07 1 0. 158 0.233 0 .463 0.669 0.990 1.424 1.853 
log ( V/ V')1 0 0.0 10 - 0.022 - 0.037 - 0.084 - 0.188 - 0.098 - 0.098 - 0.098 

0-40 

0.24 1 
2.203 

- 0.098 

Finally, then, the surface f w(u, a) has the shape of an embankment or an esker with a 
bend in it. The crest runs horizontally (Fig. 10 ) . T owards the right, in the region of high 
cavitation, the surface goes down again in a sort of cwm, instead of continuing to increase 
as it would in the case of Weertman's bedrock model. 

6. FRICTION WITH A MORE R EALISTIC MODEL OF THE B EDROC K 

6. I Bedrock formed by Juxtaposing zones with sinusoidal profiles 

First let us consider, as I have implicitly done in m y earlier papers, a bedrock formed by a 
large number of individual areas randomly placed, each one of which has a pure sinusoidal 
profile (a mosaic of washboards) . Let us suppose the roughness r to be the same for all of them . 
\Ne can then define each element by the amplitude of its undulations a = rA = 21TTjW. 

We will consider that the size of the individual areas is sufficiently sm all that the sliding 
velocity u is the same for them all. The frictionfw will be differen t for each area. On the scale 
of the glacier we will observe an average value 

00 

I J dS 
f = S dw f wdw , 

o 

dSldw being the distribution law of the areas of the different regions, a law about which one 
can m ake various hypotheses. 

In m y earlier papers this difficulty was evad ed ; I assumed a uniform distribution of areas 
between two not very well defined limits, i.e. that dSjdw is a constan t. In doing this I followed 
Weertman, who had also made the sam e assumption implicitly. As such a hypothesis is far 
from being certain, the rough argument given by Weertman (1957) seems quite adequate. 
This consists in saying that we only take account of bumps on which the friction is a maximum. 

We are thus led to make a section of the surfacefw (u, a) which we studied above and which 
is shown in Figure 10, along a line of constant u. Such a section is shown in Figure I I. The 
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OL-~ __________ +-________ ~ ________ -+ __________ ~ ____ __ 
o 0.Q1 0.1 , 10 100 

0/0* 
Fig. I I. The .functioll </> (a ) .for different values o.f the slidillg velocity Zl . (Sections o.f the surface o.f Figure 1 0 by surfaces o.f 

It = constant ) 

resulting curve has a single maximum for u ~ 2. 75u'l- or thereabouts, but has two maxima 
for u > 2.75u'l- ' 

Provided there is no cavitation, the sliding velocity is the sum of the two velocities given by 
Equations (7') and (29' ) . In the metre- bar- year system 

a( lw) 3 lw I u = -;: -- +-- m year. 
r) 13· 7 224ra 

If u is fixed 
ou au 
ca da + 'ifw dfw = o. 

The maximum (dfw = 0) is given by cu/oa = o. In this way we get the value of a at the 
maXImum as 

a = 3.38r2/J, 

1 = Ig.yl.5 uO·5. (j < 10) (47) 
This law remains valid until u = u'l- = 0.63N2 / lOor, at which point it gives 1 = tmN. 
Beyond that there is still a single maximum until a critical value u = 2.75u'l- ' a m aximum 
equal to 2.IrN. 

For still higher velocities, the curve has two maxima. One corresponds to a sliding almost 
entirely due to plasticity, the other to a sliding almost entirely due to melting and refreezing. 
When the two mechanisms are of equal importance, the friction on the contrary passes 
through a minimum. To calculate it we must extract v(J;u, a) a nd v'(l w, a) from the approxi­
mate formulae given in F igures 6 and 8, add them to obtain u and minimize as below. 

T hus for s < 0.07, the asymptotic laws lead , in the metre- bar- year system, to 

1 = 0 ·4 2 N o.83 u- o.83 ~ 1 bar. (48) 

This minimum value of the friction was taken to be the maximum value by Llibou try ( I g65), 
a mistake due to using only the limiting laws for v and v', without studying the form of the 
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whole surface j," (u, a). In reality the friction will be practically equal to the value at the 
maxima 

f = 1.3310 = 2. ITN. 
The maximum corresponding to plasticity occurs for a value of Vo such that u = 2Vo. 

From Equation (19') we can read off ao, the corresponding value of a. In the metre- bar- year 
system 

(50) 
The maximum corresponding to melting and refreezing occurs for a value of v~ such that 

u = l. 7v~. It follows from Equation (29 ' ) that a must have the value 

a~ = 0.OI2N/u. (51 ) 

Let us take as an example, to fix our thinking, a fast-flowing alpine glacier with a depth 
h = 150 m, sliding at a velocity u = 80 m /year on a bedrock of roughness T = 0.075. We 
shall see that a plausible value of the resulting pressure is N = 7 bar. From Equations (41 ' ) 
and (42' ) it follows that u'f = 4.25 m /year and a'f = 0.023 m. As u ~ u'f we find ourselves 
in the situation considered above. The friction is a maximum and has the value 2 . ITN = 1.10 

bar for the two scales ao = 0.88 m and a~ = 1.05 mm. However it is not reasonable to take as 
a model of the bedrock a mosaic of washboards with some 1000 times larger than the others! 
The bumps 1 mm high , corresponding to rock grains, will not be situated at the side of rocks 
r m high, but on these rocks. We must therefore superimpose our sine curves instead of 

juxtaposing them. 

6.2 Correction terms in the friction and stability of flow 

When one examines a longitudinal profile of bedrock on a map at a scale of I : 5 000 
for example, one can often approximate its shape to a sine curve of amplitude a = A and 
wavelength'\ = A as a first approximation. Thus for the Allalingletscher in the part uncovered 
by the avalanche of 30 August 1965, according to unpublished profiles obtained by the 
E.T.H. Zurich, A = 15 m, A = 200 m. Under the Glacier du Tacul, some 200 to 400 m 
thick at its centre, M . Vallon (private communication) found A = 60 m and A = 800 m. 
In the first case A was of the same order of magnitude as the layer of ice, in the second it is 5 
times smaller. Doubtless these are extreme cases. (Strangely in both cases r = A/A = 0.075. ) 

The study of the dynamics of a glacier which is wide compared with its depth can be made 
at two scales. We shall call these the "overall view" and the "detailed view". 

(a ) Overall view. We here consider the layer of ice as a whole sliding on a flat bed, the sine 
curve we have been discussing being part of the bumps on this bed. If the thickness of the 
glacier and the longitudinal strain-rate vary throughout the zone under study around a mean 
value without a systematic variation either up and down the glacier nor across the glacier, we 
can consider the flow to be a Nye flow as defined in Lliboutry (1965, p. 576). In the equation 
of equilibrium 

the two first terms average to zero, hence, by integrating across the whole thickness of the 
glacier, TXZ against the bedrock, which is practically equal to the friction per unit area on the 
bedrock f is given by 

f = pgh sin ex. 

(This equation will not be true, for example, at the edge of a steep-walled glacier. ) 
(b) Detailed view. The bumps and crests with amplitude A locally modify the stresses, and 

this modification is still important at the surface of the glacier. If one studies the dynamics of a 
glacier at the scale of some hundreds of metres to one kilometre, one observes, going down­
glacier, variations in Ux. (This was observed for example by Nye (1959) and his co-workers on 
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Odinsbreen. ) Integration of Equation (52) then leads, for the plane problem (7'Xy negligible) 
to z 

I dax 
7'xz = pg::; sin 0: - Tx d::;. 

o 

Furthermore, on the detailed view, the slope of the bedrock f3 differs from that of the surface 
0:. The components of the force which the bedrock applies to the glacier per unit area are 

Fx = axsin (cx - f3) + 7'xz cos (cx - f3), 

Fz = 7'xzsin (cx - f3)+azcos (0: - f3). 
The friction is thus 

f = F x cos (0: - f3) - Fz sin (0: - f3) 

= 7'xz cos 2(0:-f3) + t ( ax - az) sin 2 (0: - f3) 

" f dax 
= pgh sin 0: cos 2(0: - f3) - cos 2 (0: - f3 ) a; d::;+i(ax-az) sin 2(cx - f3). 

o 

Thus near the front in a zone where the flow is compressive (ax - az > 0) and where the 
glacier is getting thinner (1X - f3 > 0), the third term becomes important. It may however 
happen that, for f to have an acceptable value, sin ex must be negative, that is to say on the 
detailed view the surface slope may change sign near the front over distances much larger than the 
thickness of the layer of ice. (This phenomenon has been observed in Antarctica, e.g. by 
Shumskiy (1966) ) . When one adopts this detailed view and Equation (54) , we must not 
retain in our bedrock model the large-scale sine curve (A, A). It is with respect to this sine 
curve that we define bumps of the bedrock. 

In the model of a bedrock consisting of superimposed sine curves and for high rates of 
sliding the two ways of thinking lead to the same result. The condition at the lower limit is 
that the value off deduced from the stresses in the body of the glacier is equal to f deduced 
from processes occurring at the bed. 

The sine curve (A, A) leads to a term in u! (when there is no cavitation behind the large 
bumps) which can be considered as part of the second term (overall view) or of the first 
(detailed view). In my previous papers I took the detailed view and insisted on correction 
terms in Equation (54) because with the simplified bedrock model considered and the corre­
sponding law of friction, these correction terms were necessary to ensure the stability of the 
flow. But in reality it is easier to discuss problems of stability from the overall view. 

In order that the equilibrium of the glacier should be stable, it is necessary that if a 
fortuitous cause makes the speed of sliding increase momentarily, the friction should increase 
as a result. If the friction decreases, the resultant force acting on the glacier is in the downhill 
direction, it will accelerate more and more and become an avalanche. We therefore write 
this condition 

if ou > o. (55) 

6.3 Bedrock formed by the super position of several sine curves 

A bedrock model sufficiently near to reality but still accessible to theory can be obtained 
by superposing several sine curves of the same roughness r = ai!Ai, but whose amplitudes 
aI, a2, ... , ai, ... and whose wavelengths AI, A2, ... , Ai, ... vary in geometrical progression. 
The first sine curve (a, = A) can be determined from bedrock profiles obtained by seismic 
sounding and is therefore not arbitrary ; the arbitrary features are that at/Ai is constant and 
ai /ai+' is constant and the value given to this constant. Common sense tells us that it ought 
to lie between 10 and 100, and we shall adopt IQ1. 5 = 31.6. 
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The sine curve with a, = A therefore has bumps on it of height az = AI 101. 5, that is to 
say of the order of a metre. These carry little bumps of height a 3 = AI I03, that is to say 
several centimetres, and these latter will have asperities of height a4 = AI I 04· s. In general it 
is unnecessary to go any further as the la ter sine curves will have amplitudes lower than the 
thickness S of the subglacial water film and do not cause any friction. 

After having calculated Ulf and alf with the help of Equations (41 ') and (42' ), we can 
calculate log (ululf ) = X and log (ai/alf ) = ri, and plot the corresponding points Mr, Mz, . .. , Mi, 

on the surface rj> (X, r ). This has been done in Figure 12 for the case where N = 7 bars, 

/ 
~ 

o· 

10~ 

10 

Fig. 12. Approximate formulae which allow us to calculate the friction 
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u ;::::: 80 m /year, A ;::::: 40 m, and r ;::::: 0.075. Figure 12 also shows the approximate expres­
sions for 1> and s from Figures 6 and 7. 

The total friction on the bedrock will be obtained by adding the frictions for each sine 
curve, i. e. fl ' f2, f 3, .. . , but we must take into account in calculating.lt that only the area 
where, on the larger scales, the ice is in effective contact with the bedrock should be used . 
If we use Si for the value of s on a profile of amplitude ai, the friction is therefore 

(56) 

The study of the total friction as a function of the two variables u and N for different values 
of the parameters A and r characteristic of the bed can only be done by computer. One can 
however attempt to find approximate algebraic laws using the approximate expressions of 
Figure 12 . Thus for alpine glaciers the two first points often fall in the top left-hand part of the 
diagram, corresponding to plastic deformation without cavitation, s, = S2 = I. W e then 
obtain 

(
367Tr2 u) 1 

f, = t 7TrN BAN3 = 7·6r&(u/BA )!., 

f2 = IQo· sf, = 24·ori(u/BA )}. 

The point M3 (corresponding to a = A/ I 000) is in the upper zone where the valid approxi­
mate law is 

(
367Tr2 u) -,\ 

f 3 = 1.8 x tmN BaN 3 = 0.0585rt (BA/u)l, 

(
36r2 u) -~ 

S3 = 0.565 BaN 3 = 0.00 I 68r- 1 N I (BA/u)!. 

s, <{ I so that the fourth term is negligible and we obtain the approximate law 

1;::::: 3 1.6r } (u/BA)~+ 0 . 058sr~ N 2(u/BA )- l. 

But such a law is only valid in a quite restricted region ; as u varies from 0 to infinity, 
according to Equation (57) f should vary from + 00 to - 00 passing through a minimum. 
However, in reality for very low velocities there is no cavitation andf tends to 0 with u; for 
very high velocities there is cavitation everywhere a nd 1 a lso tends to 0, passing through a 
maximum. Equation (57) is therefore only of use to give an approximate value off, and at 
best of ol /ou, but seems to give a quite false 07 / ou2. 

Thef (u) given by Equation (57) is shown in Figure 13. It is a function that remains for a 
long time near to its minimum value 

lrn ;::::: 2·72rN (58) 
which occurs at 

For alpine glaciers which slide rapidly on their beds we can therefore say that to a first 
approximation the friction is given by Equation (58). This is Coulomb's law of solidfriction in the 
presence of an interstitial pressure; the normal pressure H + pgh cos ex is replaced by the resultant 
pressure N. 

6.4 Stability of the flo w on the above model 

If Coulomb's law were rigorously valid, ol /ou = 0, and a glacier would be in neutral 
equilibrium ; it could slide a t any speed without either accelerating or decelerating. In 
practice of /ou, on the overall view, must be always slightly positive, since glaciers are in 
general stable and ice avalanches are a rare phenomenon. If Equation (57) is valid, for 
ol/ou to be positive u would have to be greater than Urn. But for Equation (57) to be valid, it 
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,'\ " 
; ~Sl_ 

f =2.72rN: ___ ~t __ ..--____ ----~s~to~b~,~e~ ___ ----
m , 

IN = a fixed value l 

u 

Fig. 13. Frictionf as afwzction of the sliding velocity ufor a given resultant pressure N 

is necessary that cavitation does not a ppear behind second ord er bumps, that is to say sliding 
by m elting and refreezing over these bumps is negligible, u < Vo where 

Vo = 2.8 X 10- 4 BAN3/r' . 

Above this value,iz ceases to increase, and soon begins to decrease. As this term dominates in 
j, (if/ou becomes negative and the glacier becomes unstable again. 

With our chosen m odel of the rock bed (and assuming that this heuristic treatment contains 
no gross errors), glacier flow is only stable between two limits. One must have 

0 .8 X 10- 4 BAN3/r' < u < 3 X 10 - 4 BAN3/rz. (60) 
Hthe sliding becomes less than the lower limit, it falls irreversibly to a very low value. Hit 

exceeds the upper limi t it increases irreversibly, and a catastrophic advance or ice avalanche 
results. 

The study of actua l glaciers does not contradict this hypothesis, and even seems to support 
it. With B = 0.17 year- 1 bar- 3, A = I S to 40 m , N = 4 to 7 bars and r = 0. 1 to 0.07, we 
find acceptable values of u. 

Now let us look at the case of the detached fragment of the tongue of the Alla lingletscher. 
pgh cos ex was of order 2 bars and N was even smaller . The representative points for the 
different sine curves occur far to the right on Figure 12, in the zone where oi/ou < 0, that is to 
say in unstable flow . The fact that this detached fragment did not form part of an avalanche 
as another fragm ent had on 30 August shows that in this case something new has occurred, 
and that the theory must be modified. The new fact is the collapse oi the subglacial cavities. 
Those corresponding to M, would be some 200 m long, and those to M z som e 6 m long, whereas 
the layer of ice is on ly 15 m thick. The first ones could never form , nor could many of the 
second ; the g lacier would break in to pieces and then reform. Cavitation disappears, and we 
again take for i " and possibly for i2' the equation 

f = ~7TTN(u lvo) 1. 

6 .5 Suggestions for the improvement of the bedrock model 

The laws of friction depend essentiall y on the bedrock model adop ted , a nd all future 
progress in the theory d epends above a ll on making quantitative fie ld studies of the m orphology 
of glacier beds. Unfortunately the few mathematical studies of such profi les m ade hitherto 
are not of much use for our present problem. 
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Stone and Dugundji (1965) have surveyed a limited longitudinal profile and studied its 
level with respect to the horizontal Z (x) for 0 ~ x ~ L. To do this they double it by symmetry 
Z( -x) = Z (x), and then decompose it as a Fourier series for the symmetrical profile oflength 
2L which results. A smooth inclined plane would thus turn into a saw-tooth and hence give 
an infinite number of harmonics! 

Jaeger and Schuring (1966) perform a true spectral analysis (decomposition by a Fourier 
integral, and not by a Fourier series), but still take a horizontal plane for reference, and not a 
surface that follows the general slope of the terrain. Furthermore the band offrequencies they 
study is too narrow; between the largest wavelengths they can reveal and the smallest the 
ratio is only 102 or 103 whereas it ought to be 106 or 107. 

Once we possess such a spectral analysis, we could tell which were the wavelength regions 
most represented in the bedrock, choose four or five such bands, (AI, A; ), (A2' A~), ... , (Ai, At), ... , 
which were quite distinct and far from one another, and neglect all wavelengths outside these 
bands. 

The profile obtained if we consider only one of these bands, that is to say only the A in the 
interval (Ai, Ai) constitutes a "pseudo-sine curve" to replace the perfect sine curve (ai, Ai ) 
of the theory above. This pseudo-sine curve will appear as a succession of bumps of irregular 
amplitude and length (Fig. 14) . This will mean that the ice will always impinge on an 

Fig. I4 . Cavitation with a "pseudo-sine curve" 

appreciable part of some bumps which are larger than those that preceded them, such as 
bumps numbered 3 or 8. But on the other hand bumps immediately behind, such as those 
numbered 4, 6 and 7, may be completely overridden for quite moderate speeds. We may hope 
that these two facts will to some extent compensate and that the law relating the slope of the 
roofs of the cavities (- m = - 1TT sin wXc ) to the fraction of the bedrock effectively in contact 
with the ice s will remain approximately valid. But this is by no means certain, and so I 
suggest the following experiment: 

One dark night one should illuminate the surface of a glacier bed recently uncovered by a 
glacier with glancing illumination. The projected rays should be directed in the direction of 
movement of the glacier, and make an angle In with the general slope of the bedrock. By 
means of a vertical photograph one can planimeter the illuminated surfaces and so measure 
the real ice- rock contact area (that we have called s) when ice descends downhill from its 
protuberances with a slope m. In this way the law relating s(m) can be found. In this experi­
ment Ai will be the length of the zone photographed, Ai the minimum length of illuminated 
patches below which one cannot planimeter them. 

It is worth noting that even if studies of this type have not yet been made on Earth, they 
have already been carried out on the Moon. The length of the shadows photographed by the 
Surveyor satellite, or the variation of brilliance of the lunar surface as a function of phase 
angle, allow us to determine s(m). But even if the lunar relief contains "cirques", it would 
seem to be ruled out that these are a glacial relief!* 

* Note added in proof. Results have been recently reported by Smith ( 1967) . This a uthor compares them with 
the theoretical ones for a random surface with a Gaussian distribution of the a ltitudes.t. If M denotes the quad­
ratic mean of the slope m, he found that the "shadowing function" should be: 

l + erf (m/2I M ) 
s(m) = 1 + erf (m/24 M )+ (2/ Tr )1 (M /m) exp (- m'/2M')· 

For the sine model (m/2i M) = sin wXc and wXc is related to s by Equation (9) (or Equation (17) when 
s <{ I). Actually, for m/ M > 0.1 , the shadowing functions for both models differ by less than 30 per cent, and 
field measurements cannot decide which is the best . 
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7. EVALUATION OF THE R ESULTANT PRESSURE N 

7. I Thickness of the subglacial water film 

53 

H eat flow through the Earth m elts about 5 mm of ice per year at the bottom of a temperate 
glacier, and the heat produced by plastic deformation in the basal layers m elts a further few 
centimetres. (This latter melting takes place within the ice, but the water produced is con­
tinuously exuded towards the rock. ) In this way a film of sub glacia l water is formed which can 
completely swamp the smallest bumps and can thicken into cavities below the m edium-sized 
bumps. In the steady state this interstitial water is connected with the subglacial streams which 
form what we call the subglacial hydraulic system of the glacier. These streams are fed 
principally from the glacier surface by water which descends m oulins. Following a period of 
enhanced m elting or of heavy rain, the pressure may increase in the subglacial channels, and 
the direction of flow of the interstitia l water might even reverse. Even though we lack direct 
observations on this water film, these conclusions seem reasonably certa in as the subglacial 
hydraulic system is an experimental fact . (Let us recall that according to Weertman (1962) 
the water film is continuous from the bergschrund at the top of the glacier down to the snout, 
getting thicker all the time. ) 

W eertman estimates the loss of pressure head per unit length to be pg sin ex (ex being as 
before the angle between surface angle and the horizontal) . This would onl y be tme if the 
bedrock were horizontal. In reali ty the loss of pressure through the water film must depend 
on the distance D that the water has to flow and the pressure head Hw in the subglacial 
hydraulic system. Here we envisage only the case when the subglacial hydraulic system is at 
atmospheric pressure and when there is no cavitation . The pressure in the water film (which 
is simply the m ean value of the normal pressure G3 envisaged in paragraph 3. I) drops from a 
value P M to H over a distance D. T o simplify the situation let us suppose that the lines of flow 
in the water film are parallel. The mean value of the hydrostatic pressure in the film is thus 
t H+tpM. This must be equal to the pressure of the ice H + pgh cos ex, whence 

PM - H = 2pgh cos ex. 

The loss of pressure per unit length of the water film is thus (2pgh cos ex )/D, and the volume 
lost per unit width of film 

83 2pgh cos ex 
q = 12f1-D 

where 8 is the thickness of the water film and f1- the viscosity of water at o°C. If x is the distance 
from the point where the pressure is PM, the heat produced by the friction is Xlif, that due to 
geothermal heat is negligible. The amount of water produced is thus 

q = xuf/JLp'. 
Equating these two expressIOns for the outflow and rem embering that f = pgh sin ex, we 
finally obtain 

= ('6f1-DXU tan ex) A 

8 JLp' . 

The average value of x! in the range from 0 to D being i D!, the average film thickness will be 

- = ~(6f1-D2 U tan ex) ! (61 ) 
8 4 JLp ' . 

Numerically with f1- = 5.7 X 10-16 bar year and JLp' = 3340 bars: 

S = 0. 77 X IO- 6(D 2 
U tan ex) 5 m. (61 ') 

Even if D is 100 m and U 100 m /year, S is still only of the order of 0 .05 mm (and not I mm 
as calculated by W eertman). 
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7.2 Evaluation of the pressure Hw in the subglacial hydraulic system 

There are three possible cases, which lead to three different laws for p and thus for f (u) . 
(a ) Subglacial hydraulic system at atmospheric pressure H. This will be the case for mountain 

glaciers when the slope of the bedrock is important and excluding periods producing large 
quantities of water. 

(b ) Subglacial hydraulic system being filled. This will be the case for the same glaciers with an 
inclined bed during periods producing large quantities of water or sufficiently far from the 
snout. In this case in the given region of the glacier the pressure in the hydraulic system, H w, 

increases with depth according to the laws of hydrostatics 

Hw = H + p'g (h- hw) 

where p'g is the specific gravity of water, h the depth of the glacier, and hw the depth of water 
in the " wells", i.e. in the m oulins. This latter quantity is not well defined, and varies from 
time to time. To simplify the situation we may consider it to be equa l to the depth of the 
crevasses and therefOl"e constant. 

(c) Flooded subglacial hydraulic system. This case is like the previous one but with (h - hw ) 
equal to a constant ~. It occurs in overdeepened zones in which the water cannot escape 
unless it gets over a sill ( ~ is therefore the height difference between this sill and the bedrock, 
as in Figure I sa). This case will also occur for glaciers ending in the sea or a lake ( ~ is then the 
height of the bedrock compared with sea-level or lake level, as in Fig. ISb). We therefore write 

7.3 Estimation of the interstitial pressure p and the resultant pressure N 

The bumps envisaged in the present theory of cavitation, although wide compared with 
their height, are not infinitely wide. Cavities down-glacier from bumps cover a finite area, of 
the order of .:\2. Water is continua lly accumulating there, so they must have some outflow. 
(Without this the cavitation would continually increase, and the friction would drop to zero, 
as has been shown by recent experiments of Brepson (1966).) These outflows cannot connect 
with the up-glacier faces of the bumps, where there is a significant overpressure of the ice, but 
at the sides in regions where ice pressure is near to its average value. 

h 

~studied area 

h 

® '-:studied area 

Fig. 15. Case when the subglacial hy draulic system is under pressure. a. An overdeepened zone. h. N ear a calving front 

https://doi.org/10.3189/S0022143000020396 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000020396


T H EO RY OF UBG L AC I A L CAV I TAT I ON AN D GLAC I E R SL I D I NG 55 

In the stead y state in order that water formed beneath the glacier can be drained ou t, the 
subglacia l cavities must be grouped like a string of beads, with the in terstitia l pressures 
continuously decreasing (Fig. 16) . The minimum pressure, a t the end of the string, will be 
that appropriate to the subglacial h yd raulic system , i.e. H w. T o find the m aximum pressure, 
imagine the outflows to be too la rge and the drop of pressure between the successive cavities 
too sma ll. I ce will flow to close such outflows a nd to increase the pressure drops. This process 
will stop when, a t the top of the string, H +pgh cos ex = p. Along the string of beads, in the 
stead y state, we therefore have 

H + pgh cos ex ?: p ?: H w. 

The m ean value of p will therefore be 

ji = KHw+( I - K)(H + pgh cosex) 

where K is a factor which d epends on the network of beads and subglacia l channels; K = t 
for a linear string (strings of beads essentia lly pa rallel), K = t for a two-d im ensiona l network 
with ma ny ramifica tions (wa ter flowing radia lly from a cavity in which the pressure is 
H + pgh cos ex towards the channels which surround it). 

From this we d educe a m ean value of the resultan t pressu re JV which enters to the first 
order in the expression for the fri ction. 

Case (a ) . H w = H. 
.N = Kpgh cos ex. (65) 

T his was suggested as a hypothesis, without justifica tion, by Hubbert a nd Rubey (1959) . 
Case (b ) . H w given by Equation (62 ) . 

.N = Kp'ghw- Kg (p' - p cos ex) h. (66) 

T his relation only rem aInS valid if hw < h < h w p' !(p' - p cos ex) or (as cos ex = I and 
p = 0.8g) 

h w ·~ h < ghw. 

If h < hw, Equation (65) is valid ; if h > 9hw the glacier is fl oa ted by the water which accumu­
la tes at the bottom of the glacier . 

ice movement 

~ 

Fig. 16. String of subglacial cavities flowing into a sllbglacial stream 
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Case (c) . Hw given by Equation (63). 

fl = Kpgh cos ex- Kp'g~ 

provided h > p' ~jp cos ex, without which the glacier is floated. When N does not enter to the 
first order, its appropriate mean value will be given by similar expressions but with different 
values of K. 

It is obvious that these approximate calculations do not take account of transient pheno­
mena which can occur in the hydraulic system and the subglacial cavities when there is an 
advance or retreat of the glacier (such as the "suction effect" already mentioned). 

7.4 Slope of a glacier with the Coulomb friction law 

Using the value of N estimated in this way in the approximation given by Equation (58) 
(the Coulomb friction law), we obtain a friction directly proportional to the thickness h. As 
we also know that, on the overall view,j and h are related by Equation (53), it follows that there 
is a direct relation between h and ex. 

Case (a). (Sloping bedrock, subglacial channels at atmospheric pressure. ) Here 

tan ex :::::: 2.72rK. (68) 

Thus if K = 0.58 and r = 0.075, tan ex :::::: 0.12. We are dealing with an average slope of the 
glacier. Ice falls or the snout region must be studied from the detailed view; these questions will be 
discussed in a later paper. 

Case (c) . (Overdeepened regions, glaciers ending in water. ) In this case 

tan ex :::::: 2'72rK(I --hP'~ ). (69) 
p cos ex 

The slope is less than in the preceding case. It becomes zero at the actual front, where 
h = p' ~ I p (the glacier begins to float, and as a result calves icebergs with the aid of the tide) . 

These results are in qualitative agreement with the facts. It is thus suggested that the mean 
slope of a glacier which is sliding rapidly on its bed gives some idea of the roughness at the 
scale of 1.1 (bumps of the order of magnitude of a metre). 

7.5 Kinematic waves in case (a) using Equation (57) for the friction 

Our interest in the overall view is that it allows us to study kinematic waves. If we put on 
one side case (b) (subglacial hydraulic system being filled ), a case which only occurs for a short 
period each year, the interstitial pressure p (or the resultant pressureN) cease to be independent 
variables. The friction deduced for processes occurring at the bed of the glacier is only a 
function of u, h and ex. But we have also seen that on the overall view (and on that alone), the 
friction deduced from the equilibrium of the glacier, Equation (53), only depends on h and ex . 
Eliminating the friction, it follows that u is a function solely of h and ex. 

This is the condition for us to be able to write an equation with perturbations, and to speak 
of kinematic waves. When the velocity due to deformation within the body of the glacier is 
negligible compared with the sliding velocity, the speed of kinematic waves of material flow 
can be written (see e.g. Lliboutry, 1965, p. 737- 41 ) 

c = u+ h ouloh, 
and their diffusion coefficient 

D = h oujoex. 

Unfortunately we have not obtained any simple law forf (u, N ), but have had to content 
ourselves with the approximations given above. The first approximation ( f independent of u) 
is very simple- it leads to a glacier reacting like a solid block, without any wave propagation. 
We must therefore use the second approximation (Equation (57)) , which is only valid in a 
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restricted region. H ere we limit ourselves to discussing case (a ), the study of case (c) being 
left for a later paper. Equa tions (53), (57) a nd (65) lead to 

pgh sin ex = 3 1 .6r~(u /BA ) l + o.058Y~( Kpgh cos ex)2(u/BA )- I. 
Whence 

(~) ~ = pgh sin ex± [sin2ex- ~ 2 . 72rK cosex) 2 ] l. 
BA 63 .2r ~ 

Only the positive root corresponds to a stable equilibrium. VVe no te tha t the surface slope, 
tan ex, must be g reater than the limiting value given by Equa tion (68), which is a first a pproxi­
mation for it. 

In the region where the approximation given by Equation (57) is valid , the sliding 
velocity u is therefore proportional to h3• (This simple law recalls tha t of W eertma n, with 
m = n instead of m = t (n+ I).) Kinematic waves will travel with a velocity 4u. 

OU _ 3(B A )} pghUJcosex{ I + (2·72rK)' } 
Oex - 63.2r3 I + [I -(2.72rKcot ex )2]" 

ou/ oex tends to infinity as tan ex approaches its limiting value 2.72rK. The diffusion of kine­
ma tic waves will therefore always be very m arked in zones with strong sliding. 

It is thus not the existence of kinematic waves travelling about four times faster tha n the 
ice, but their extremely rapid diffusion, which can be adduced as an a rgument in favour of 
the present theory. 

CONCLUSION 

The reader will, I hope, excuse this long and complicated theory, since natural phenom ena 
a re not simple. As Paul Valery said "Tout ce qui est simple est faux" (everything simple is 
untrue) . But he added " T out ce qui est complexe est inutilisable" (everything complex is 
unusable) . I hope I have d emonstrated an exception ; the laws of friction found are in the end 
simple, and d epend on only a few parameters. 

This general theory of cavita tion throws light on several important factors about which we 
a re extremely ill informed . Until they have been studied better, it is useless to d evelop the 
theory further. 

(a ) It would be desirable to make spectral analyses of rock beds over a very wide range of 
wavelengths (106 to IQ 7). 

(b) The interstitial pressure at the bottom of a glacier ought to be m easured ; to do this it 
would be sufficient to bore completely through a glacier, put a pressure measuring device at the 
bottom , a nd close up the hole. 

(c) The conditions under which a subglacia l cavity would collapse when the glacier 
thickness is too small ought to be d etermined . 

(d ) The rheological properties of ice satura ted with water (not only its steady-state creep 
but also transient creep) a re practically unknown. 

This theory shows us, among other things, the difficulty there is in getting plastic d eforma­
tion of temperate ice in the la boratory. When the specimen is not very la rge in size, it is 
a lways m elting a nd refreezing processes which predomina te. Experimen ts at p resen t being 
m ade by M . Brepson in m y la boratory show tha t the enormous viscometer containing speci­
m ens weighing 2 0 kg is hardly la rge enough. 

Fina lly this theory should a lso suggest work to theorists, as the boundary condition a t the 
bo ttom of the glacier which we have found is not one of the three conditions usually used . 

In finishing it is a pleasure to thank Dr. ]. W. Glen for having accepted responsibility for 
the translation of this paper into English . 

MS. receiIJed 5 July 1966 and in revised f orm 9 June 1967 
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