Skip to main content Accessibility help

Vortex dynamics and new lift enhancement mechanism of wing–body interaction in insect forward flight

  • Geng Liu (a1), Haibo Dong (a1) and Chengyu Li (a1)


The effects of wing–body interaction (WBI) on aerodynamic performance and vortex dynamics have been numerically investigated in the forward flight of cicadas. Flapping wing kinematics was reconstructed based on the output of a high-speed camera system. Following the reconstruction of cicada flight, three models, wing–body (WB), body-only (BD) and wings-only (WN), were then developed and evaluated using an immersed-boundary-method-based incompressible Navier–Stokes equations solver. Results have shown that due to WBIs, the WB model had a 18.7 % increase in total lift production compared with the lift generated in both the BD and WN models, and about 65 % of this enhancement was attributed to the body. This resulted from a dramatic improvement of body lift production from 2 % to 11.6 % of the total lift produced by the wing–body system. Further analysis of the associated near-field and far-field vortex structures has shown that this lift enhancement was attributed to the formation of two distinct vortices shed from the thorax and the posterior of the insect, respectively, and their interactions with the flapping wings. Simulations are also used to examine the new lift enhancement mechanism over a range of minimum wing–body distances, reduced frequencies and body inclination angles. This work provides a new physical insight into the understanding of the body-involved lift-enhancement mechanism in insect forward flight.


Corresponding author

Email address for correspondence:


Hide All
Aono, H., Liang, F. & Liu, H. 2008 Near- and far-field aerodynamics in insect hovering flight: an integrated computational study. J. Expl Biol. 211 (2), 239257.
Bennett, L. 1966 Insect aerodynamics: vertical sustaining force in near-hovering flight. Science 152 (3726), 12631266.
Birch, J. M. & Dickinson, M. H. 2001 Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature 412 (6848), 729733.
Bomphrey, R. J., Lawson, N. J., Harding, N. J., Taylor, G. K. & Thomas, A. L. R. 2005 The aerodynamics of Manduca sexta: digital particle image velocimetry analysis of the leading-edge vortex. J. Expl Biol. 208 (6), 10791094.
Bomphrey, R. J., Taylor, G. K. & Thomas, A. L. R. 2009 Smoke visualization of free-flying bumblebees indicates independent leading-edge vortices on each wing pair. Exp. Fluids 46 (5), 811821.
Dickinson, M. H. & Gotz, K. G. 1993 Unsteady aerodynamic performance of model wings at low Reynolds numbers. J. Expl Biol. 174 (1), 4564.
Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284 (5422), 19541960.
Dong, H., Bozkurttas, M., Mittal, R., Madden, P. & Lauder, G. V. 2010 Computational modelling and analysis of the hydrodynamics of a highly deformable fish pectoral fin. J. Fluid Mech. 645, 345373.
Dong, H. & Liang, Z. 2010 Effects of ipsilateral wing–wing interactions on aerodynamic performance of flapping wings. In Proceedings of 48th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA 2010-71.
Dong, H., Mittal, R. & Najjar, F. M. 2006 Wake topology and hydrodynamic performance of low-aspect-ratio flapping foils. J. Fluid Mech. 566, 309343.
Ellington, C. P. 1984 The aerodynamics of hovering insect flight. III. Kinematics. Phil. Trans. R. Soc. Lond. B 305 (1122), 4178.
Ellington, C. P., Van Den Berg, C., Willmott, A. P. & Thomas, A. L. R. 1996 Leading-edge vortices in insect flight. Nature 384, 626630.
Hu, Z. & Deng, X. 2014 Aerodynamic interaction between forewing and hindwing of a hovering dragonfly. Acta Mechanica Sin. 30 (6), 787799.
Koehler, C., Liang, Z., Gaston, Z., Wan, H. & Dong, H. 2012 3D reconstruction and analysis of wing deformation in free-flying dragonflies. J. Expl Biol. 215 (17), 30183027.
Lehmann, F.-O. 2008 When wings touch wakes: understanding locomotor force control by wake–wing interference in insect wings. J. Expl Biol. 211 (2), 224233.
Lehmann, F.-O. & Pick, S. 2007 The aerodynamic benefit of wing–wing interaction depends on stroke trajectory in flapping insect wings. J. Expl Biol. 210 (8), 13621377.
Lehmann, F.-O., Sane, S. P. & Dickinson, M. 2005 The aerodynamic effects of wing–wing interaction in flapping insect wings. J. Expl Biol. 208 (16), 30753092.
Li, C., Dong, H. & Liu, G. 2015 Effects of a dynamic trailing-edge flap on the aerodynamic performance and flow structures in hovering flight. J. Fluids Struct. 58, 4965.
Liang, B. & Sun, M. 2013 Aerodynamic interactions between wing and body of a model insect in forward flight and maneuvers. J. Bionic Engng 10 (1), 1927.
Lighthill, M. J. 1973 On the Weis-Fogh mechanism of lift generation. J. Fluid Mech. 60 (1), 117.
Liu, G., Ren, Y., Zhu, J., Bart-Smith, H. & Dong, H. 2015 Thrust producing mechanisms in ray-inspired underwater vehicle propulsion. Theor. Appl. Mech. Lett. 5 (1), 5457.
Liu, H. & Kawachi, K. 1998 A numerical study of insect flight. J. Comput. Phys. 146 (1), 124156.
Luttges, M. W. 1989 Accomplished insect fliers. In Frontiers in Experimental Fluid Mechanics, pp. 429456. Springer.
Maxworthy, T. 1979 Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the fling. J. Fluid Mech. 93 (1), 4763.
Maybury, W. J & Lehmann, F.-O. 2004 The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. J. Expl Biol. 207 (26), 47074726.
Miller, L. A. & Peskin, C. S. 2005 A computational fluid dynamics of clap and fling’ in the smallest insects. J. Expl Biol. 208 (2), 195212.
Mittal, R. & Balachandar, S. 1995 Generation of streamwise vortical structures in bluff body wakes. Phys. Rev. Lett. 75 (7), 13001303.
Mittal, R., Dong, H., Bozkurttas, M., Najjar, F. M., Vargas, A. & von Loebbecke, A. 2008 A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries. J. Comput. Phys. 227 (10), 48254852.
Reavis, M. A. & Luttges, M. W. 1988 Aerodynamic forces produced by a dragonfly. AIAA J. 88 (0330), 113.
Sane, S. P. 2003 The aerodynamics of insect flight. J. Expl Biol. 206 (23), 41914208.
Srygley, R. B. & Thomas, A. LR. 2002 Unconventional lift-generating mechanisms in free-flying butterflies. Nature 420 (6916), 660664.
Sun, M. & Tang, J. 2002 Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. J. Expl Biol. 205 (1), 5570.
Sun, M. & Yu, X. 2006 Aerodynamic force generation in hovering flight in a tiny insect. AIAA J. 44 (7), 15321540.
Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, R. L. & Bomphrey, R. J. 2004 Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. J. Expl Biol. 207 (24), 42994323.
Tobalske, B. W., Warrick, D. R., Clark, C. J., Powers, D. R., Hedrick, T. L., Hyder, G. A. & Biewener, A. A. 2007 Three-dimensional kinematics of hummingbird flight. J. Expl Biol. 210 (13), 23682382.
Van Den Berg, C. & Ellington, C. P. 1997 The three-dimensional leading-edge vortex of a hovering model hawkmoth. Phil. Trans. R. Soc. Lond. B 352 (1351), 329340.
Wan, H., Dong, H. & Gai, K. 2015 Computational investigation of cicada aerodynamics in forward flight. J. R. Soc. Interface 12 (102), 20141116.
Wang, Z. J. 2004 The role of drag in insect hovering. J. Expl Biol. 207 (23), 41474155.
Wang, Z. J. 2005 Dissecting insect flight. Annu. Rev. Fluid Mech. 37, 183210.
Wang, Z. J. & Russell, D. 2007 Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Phys. Rev. Lett. 99 (14), 148101.
Weis-Fogh, T. 1973 Quick estimates of flight fitness in hovering animals, including novel mechanisms for lift production. J. Expl Biol. 59, 169230.
Yu, X. & Sun, M. 2009 A computational study of the wing–wing and wing–body interactions of a model insect. Acta Mechanica Sin. 25 (4), 421431.
Zhang, J. & Lu, X. 2009 Aerodynamic performance due to forewing and hindwing interaction in gliding dragonfly flight. Phys. Rev. E 80 (1), 017302.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title

Liu et al. supplementary movie
3D flow structures of WB model

 Video (8.2 MB)
8.2 MB

Liu et al. supplementary movie
3D flow structures of WN model

 Video (8.2 MB)
8.2 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed