Abe, H., Kawamura, H. & Choi, H.
2004
Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to *Re*
_{𝜏} = 640. Trans. ASME J. Fluids Engng
126 (5), 835–843.

Adrian, R. J. & Marusic, I.
2012
Coherent structures in flow over hydraulic engineering surfaces. J. Hydraul Res.
50 (5), 451–464.

del Álamo, J. C. & Jiménez, J.
2003
Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids
15, 41–44.

Baker, L., Frankel, A., Mani, A. & Coletti, F.
2017
Coherent clusters of inertial particles in homogeneous turbulence. J. Fluid Mech.
833, 364–398.10.1017/jfm.2017.700

Balachandar, S. & Eaton, J. K.
2010
Turbulent dispersed multiphase flow. Annu. Rev. Fluid. Mech.
42, 111–133.10.1146/annurev.fluid.010908.165243

Balakumar, B. & Adrian, R.
2007
Large-and very-large-scale motions in channel and boundary-layer flows. Phil. Trans. R. Soc. Lond. A
365 (1852), 665–681.

Brandt, L.
2014
The lift-up effect: the linear mechanism behind transition and turbulence in shear flows. Eur. J. Mech. (B/Fluids)
47, 80–96.

Cameron, S., Nikora, V. & Stewart, M.
2017
Very-large-scale motions in rough-bed open-channel flow. J. Fluid Mech.
814, 416–429.

Capecelatro, J. & Desjardins, O.
2013
An Euler–Lagrange strategy for simulating particle-laden flows. J. Comput. Phys.
238, 1–31.

Capecelatro, J., Desjardins, O. & Fox, R. O.
2018
On the transition between turbulence regimes in particle-laden channel flows. J. Fluid Mech.
845, 499–519.

Carter, D. W. & Coletti, F.
2018
Small-scale structure and energy transfer in homogeneous turbulence. J. Fluid Mech.
854, 505–543.

Crowe, C. T.
2000
On models for turbulence modulation in fluid–particle flows. Intl J. Multiphase Flow
26 (5), 719–727.

Dritselis, C. D. & Vlachos, N. S.
2008
Numerical study of educed coherent structures in the near-wall region of a particle-laden channel flow. Phys. Fluids
20 (5), 055103.

Elghobashi, S. & Truesdell, G.
1993
On the two-way interaction between homogeneous turbulence and dispersed solid particles. I. Turbulence modification. Phys. Fluids A
5 (7), 1790–1801.10.1063/1.858854

Guala, M., Hommema, S. & Adrian, R.
2006
Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech.
554, 521–542.

Gualtieri, P., Picano, F., Sardina, G. & Casciola, C. M.
2013
Clustering and turbulence modulation in particle-laden shear flows. J. Fluid Mech.
715, 134–162.10.1017/jfm.2012.503

Hamilton, J. M., Kim, J. & Waleffe, F.
1995
Regeneration mechanisms of near-wall turbulence structures. J. Fluid Mech.
287, 317–348.

Hutchins, N. & Marusic, I.
2007
Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech.
579, 1–28.10.1017/S0022112006003946

Hwang, Y. & Bengana, Y.
2016
Self-sustaining process of minimal attached eddies in turbulent channel flow. J. Fluid Mech.
795, 708–738.

Jiménez, J.
2011
Cascades in wall-bounded turbulence. Annu. Rev. Fluid. Mech.
44 (1), 27.

Jiménez, J.
2018
Coherent structures in wall-bounded turbulence. J. Fluid Mech.
842.10.1017/jfm.2018.144

Jiménez, J. & Pinelli, A.
1999
The autonomous cycle of near-wall turbulence. J. Fluid Mech.
389, 335–359.10.1017/S0022112099005066

Kim, K. C. & Adrian, R. J.
1999
Very large-scale motion in the outer layer. Phys. Fluids
11 (2), 417–422.

Klinkenberg, J., Sardina, G., De Lange, H. & Brandt, L.
2013
Numerical study of laminar–turbulent transition in particle-laden channel flow. Phys. Rev. E
87 (4), 043011.

Lee, J. H. & Sung, H. J.
2011
Very-large-scale motions in a turbulent boundary layer. J. Fluid Mech.
673, 80–120.10.1017/S002211201000621X

Lee, M. & Moser, R. D.
2019
Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number. J. Fluid Mech.
860, 886–938.10.1017/jfm.2018.903

Lozano-Durán, A. & Jiménez, J.
2014
Effect of the computational domain on direct simulations of turbulent channels up to *Re*
_{𝜏} = 4200. Phys. Fluids
26 (1), 011702.

Marchioli, C. & Soldati, A.
2002
Mechanisms for particle transfer and segregation in a turbulent boundary layer. J. Fluid Mech.
468, 283–315.

Marusic, I., Mathis, R. & Hutchins, N.
2010
Predictive model for wall-bounded turbulent flow. Science
329 (5988), 193–196.

Marusic, I. & Monty, J. P.
2019
Attached eddy model of wall turbulence. Annu. Rev. Fluid. Mech.
51, 49–74.

Michael, D.
1964
The stability of plane Poiseuille flow of a dusty gas. J. Fluid Mech.
18 (1), 19–32.

Monchaux, R., Bourgoin, M. & Cartellier, A.
2010
Preferential concentration of heavy particles: a Voronoï analysis. Phys. Fluids
22 (10), 103304.

Monchaux, R., Bourgoin, M. & Cartellier, A.
2012
Analyzing preferential concentration and clustering of inertial particles in turbulence. Intl J. Multiphase Flow
40, 1–18.

Nezu, I.
2005
Open-channel flow turbulence and its research prospect in the 21st century. J. Hydraul. Engng
131 (4), 229–246.

Nezu, I. & Nakagawa, H.1993 *Turbulence in open-channel flows*. *IAHR-Monograph*. CRC Press.

Pan, Y. & Banerjee, S.
1995
A numerical study of free-surface turbulence in channel flow. Phys. Fluids
7 (7), 1649–1664.

Pan, Y. & Banerjee, S.
1996
Numerical simulation of particle interactions with wall turbulence. Phys. Fluids
8 (10), 2733–2755.

Park, H. J., O’Keefe, K. & Richter, D. H.
2018
Rayleigh–Bénard turbulence modified by two-way coupled inertial, nonisothermal particles. Phys. Rev. Fluids
3 (3), 034307.

Poelma, C. & Ooms, G.
2006
Particle–turbulence interaction in a homogeneous, isotropic turbulent suspension. Appl. Mech. Rev.
59 (2), 78–90.

Rawat, S., Cossu, C., Hwang, Y. & Rincon, F.
2015
On the self-sustained nature of large-scale motions in turbulent Couette flow. J. Fluid Mech.
782, 515–540.10.1017/jfm.2015.550

Reeks, M.
1983
The transport of discrete particles in inhomogeneous turbulence. J. Aero. Sci.
14 (6), 729–739.

Richter, D. H.
2015
Turbulence modification by inertial particles and its influence on the spectral energy budget in planar Couette flow. Phys. Fluids
27 (6), 063304.10.1063/1.4923043

Richter, D. H. & Sullivan, P. P.
2014
Modification of near-wall coherent structures by inertial particles. Phys. Fluids
26 (10), 103304.

Saffman, P.
1962
On the stability of laminar flow of a dusty gas. J. Fluid Mech.
13 (1), 120–128.10.1017/S0022112062000555

Sardina, G., Schlatter, P., Brandt, L., Picano, F. & Casciola, C. M.
2012
Wall accumulation and spatial localization in particle-laden wall flows. J. Fluid Mech.
699, 50–78.10.1017/jfm.2012.65

Schoppa, W. & Hussain, F.
2002
Coherent structure generation in near-wall turbulence. J. Fluid Mech.
453, 57–108.

Smits, A. J., McKeon, B. J. & Marusic, I.
2011
High-Reynolds number wall turbulence. Annu. Rev. Fluid. Mech.
43 (1), 353–375.

Sumer, B. M. & Oguz, B.
1978
Particle motions near the bottom in turbulent flow in an open channel. J. Fluid Mech.
86 (1), 109–127.

Tanaka, T. & Eaton, J. K.
2008
Classification of turbulence modification by dispersed spheres using a novel dimensionless number. Phys. Rev. Lett.
101 (11), 114502.10.1103/PhysRevLett.101.114502

Toh, S. & Itano, T.
2005
Interaction between a large-scale structure and near-wall structures in channel flow. J. Fluid Mech.
524, 249–262.

Townsend, A. A.
1980
The Structure of Turbulent Shear Flow. Cambridge University Press.

Waleffe, F.
1997
On a self-sustaining process in shear flows. Phys. Fluids
9 (4), 883–900.

Wang, G., Abbas, M. & Climent, E.
2018
Modulation of the regeneration cycle by neutrally buoyant finite-size particles. J. Fluid Mech.
852, 257–282.

Wang, G. & Richter, D.
2019
Modulation of the turbulence regeneration cycle by inertial particles in planar Couette flow. J. Fluid Mech.
861, 901–929.

Yamamoto, Y., Kunugi, T. & Serizawa, A.
2001
Turbulence statistics and scalar transport in an open-channel flow. J. Turbul.
2 (10), 1–16.

Zhao, L., Andersson, H. I. & Gillissen, J. J.
2013
Interphasial energy transfer and particle dissipation in particle-laden wall turbulence. J. Fluid Mech.
715, 32–59.