Skip to main content Accessibility help
×
Home

Transmission and reflection of internal solitary waves incident upon a triangular barrier

  • B. R. Sutherland (a1) (a2), S. Keating (a1) and I. Shrivastava (a3) (a4)

Abstract

We report upon laboratory experiments and numerical simulations examining the evolution of an interfacial internal solitary wave incident upon a triangular ridge whose peak lies below the interface. If the ridge is moderately large, the wave is observed to shoal and break similar to solitary waves shoaling upon a constant slope, but interfacial waves are also observed to transmit over and reflect from the ridge. In laboratory experiments, by measuring the interface displacement as it evolves in time, we measure the relative transmission and reflection of available potential energy after the incident wave has interacted with the ridge. The numerical simulations of laboratory- and ocean-scale waves measure both the available potential and kinetic energy to determine the partition of incident energy into that which is transmitted and reflected. From shallow-water theory, we define a critical amplitude, $A_{c}$ , above which interfacial waves are unstable. The transmission is found to decrease from one to zero as the ratio of the incident wave amplitude to $A_{c}$ increases from less than to greater than one. Empirical fits are made to analytic curves through measurements of the transmission and reflection coefficients.

Copyright

Corresponding author

Email address for correspondence: bruce.sutherland@ualberta.ca

References

Hide All
Aghsaee, P., Boegman, L., Diamessis, P. J. & Lamb, K. G. 2012 Boundary-layer-separation-driven vortex shedding beneath internal solitary waves of depression. J. Fluid Mech. 690, 321344.
Aghsaee, P., Boegman, L. & Lamb, K. G. 2010 Breaking of shoaling internal solitary waves. J. Fluid Mech. 659, 289317.
Apel, J. R., Holbrook, J. R., Liu, A. K. & Tsai, J. J. 1985 The Sulu Sea internal soliton experiment. J. Phys. Oceanogr. 15, 16251651.
Boegman, L., Ivey, G. N. & Imberger, J. 2005 The degeneration of internal waves in lakes with sloping topography. Limnol. Oceanogr. 50, 16201637.
Bourgault, D. & Kelley, D. E. 2003 Wave-induced boundary mixing in a partially mixed estuary. J. Mar. Res. 61, 553576.
Bourgault, D. & Kelley, D. E. 2007 On the reflectance of uniform slopes for normally incident interfacial solitary waves. J. Phys. Oceanogr. 37, 11561162.
Chen, C.-Y. 2010 Using discriminant analysis to determine the breaking criterion for an ISW propagating over a ridge. Environ. Fluid Mech. 10, 577586.
Chen, C.-Y., Hsu, J. R.-C., Cheng, M.-H., Chen, H.-H. & Kuo, C.-F. 2007 An investigation on internal solitary waves in a two-layer fluid: propagation and reflection from steep slopes. Ocean Engng 34, 171184.
Chumakova, L., Menzaque, F., Milewski, P., Rosales, R., Tabak, E. & Turner, C. 2009 Stability properties and nonlinear mappings of two and three-layer stratified flows. Stud. Appl. Maths 122, 123137.
Diamessis, P. J. & Redekopp, L. G. 2006 Numerical investigation of solitary internal wave-induced global instability in shallow water benthic boundary layers. J. Phys. Oceanogr. 36, 784812.
Dubreil-Jacotin, M. L. 1937 Sur les théoremes d’existence relatifs aux ondes permanentes périodiques à deux dimensions dans les liquides hétérogènes. J. Math. Pures Appl. 16, 4367.
El, G. A., Grimshaw, R. H. J. & Kamchatnov, A. M. 2007 Evolution of solitary waves and undular bores in shallow-water flows over a gradual slope with bottom friction. J. Fluid Mech. 585, 213244.
Farmer, D. M., Alford, M. H., Lien, R.-C., Yang, Y. J., Chang, M.-H. & Li, Q. 2011 From Luzon Strait to Dongsha Plateau: stages in the life of an internal wave. Oceanography 24 (4), 6477.
Fructus, D., Carr, M., Grue, J., Jensen, A. & Davies, P. A. 2009 Shear-induced breaking of large internal solitary waves. J. Fluid Mech. 620, 129.
van Gastel, P., Ivey, G. N., Meuleners, M. J., Antenucci, J. P. & Fringer, O. 2009 The variability of the large-amplitude internal wave field on the Australian North West Shelf. Cont. Shelf Res. 29, 13731383.
Grimshaw, R. H. J., Pelinovsky, E., Talipova, T. & Kurkin, A. 2004 Simulation of the transformation of internal solitary waves on oceanic shelves. J. Phys. Oceanogr. 34, 27742791.
Grue, J., Jensen, A., Rusås, P.-O. & Sveen, J. K. 1999 Properties of large-amplitude internal waves. J. Fluid Mech. 380, 257278.
Guo, Y., Sveen, J. K., Davies, P. A., Grue, J. & Dong, P. 2004 Modelling the motion of an internal solitary wave over a bottom ridge in a stratified fluid. Environ. Fluid Mech. 4, 415441.
Helfrich, K. R. 1992 Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech. 243, 133154.
Helfrich, K. R. & Melville, W. K. 2006 Long nonlinear internal waves. Annu. Rev. Fluid Mech. 38, 395425.
Hult, E. L., Troy, C. D. & Koseff, J. R. 2011a The mixing efficiency of interfacial waves breaking at a ridge: 1. Overall mixing efficiency. J. Geophys. Res. 116, C02003.
Hult, E. L., Troy, C. D. & Koseff, J. R. 2011b The mixing efficiency of interfacial waves breaking at a ridge: 2. Local mixing processes. J. Geophys. Res. 116, C02004.
Lamb, K. G. 1994 Numerical experiments of internal wave generation by strong tidal flow across a finite amplitude bank edge. J. Geophys. Res. 99, 843864.
Lamb, K. G. 2002 A numerical investigation of solitary internal waves with trapped cores via shoaling. J. Fluid Mech. 451, 109144.
Lamb, K. G. & Wilkie, K. P. 2004 Conjugate flows for waves with trapped cores. Phys. Fluids 16, 46854695.
Lamb, K. G. & Yan, L. 1996 The evolution of internal wave undular bores: comparison of a fully-nonlinear numerical model with weakly nonlinear theories. J. Phys. Oceanogr. 26, 27122734.
Long, R. R. 1953 Some aspects of the flow of stratified fluids: a theoretical investigation. Tellus 5, 4258.
Long, R. R. 1956 Solitary waves in one- and two-fluid systems. Tellus 8, 460471.
Maderich, V., Talipova, T., Grimshaw, R., Pelinovsky, E., Choi, B., Brovchenko, I., Terletska, K. & Kim, D. C. 2009 The transformation of an interfacial solitary wave of elevation at a bottom step. Nonlinear Process. Geophys. 16, 3342.
Maderich, V., Talipova, T., Grimshaw, R., Terletska, K., Brovchenko, I., Pelinovsky, E. & Choi, B. 2010 Interaction of a large amplitude interfacial solitary wave of depression with a bottom step. Phys. Fluids 22, 076602.
Mercier, M. J., Garnier, N. B. & Dauxois, T. 2008 Reflection and diffraction of internal waves analyzed with the Hilbert transform. Phys. Fluids 20, 086601.
Michallet, H. & Ivey, G. N. 1999 Experiments on mixing due to internal solitary waves breaking on uniform slopes. J. Geophys. Res. 104, 1346713477.
Milewski, P., Tabak, E., Turner, C., Rosales, R. & Menzaque, F. 2004 Nonlinear stability of two-layer flows. Commun. Math. Sci. 2 (3), 427442.
New, A. L. & Pingree, R. D. 1992 Local generation of internal soliton packets in the central Bay of Biscay. Deep-Sea Res. 39 (9), 15211534.
Osborne, A. R. & Burch, T. L. 1980 Internal solitons in the Andaman Sea. Science 208, 451460.
Pinkel, R. 2000 Internal solitary waves in the warm pool of the western equatorial Pacific. J. Phys. Oceanogr. 30, 29062926.
Reeder, D. B., Ma, B. B. & Yang, Y. J. 2011 Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves. Mar. Geol. 279, 1218.
Richards, C., Bourgault, D., Galbraith, P. S., Hay, A. & Kelley, D. E. 2013 Measurements of shoaling internal waves and turbulence in an estuary. J. Geophys. Res. 118, 273286.
Sandstrom, H. & Elliott, J. A. 1984 Internal tide and solitons on the Scotian Shelf: a nutrient pump at work. J. Geophys. Res. 89, 64156426.
Sutherland, B. R., Barrett, K. J. & Ivey, G. N. 2013 Shoaling internal solitary waves. J. Geophys. Res. 118, 114.
Sveen, J. K., Guo, Y., Davies, P. A. & Grue, J. 2002 On the breaking of internal solitary waves at a ridge. J. Fluid Mech. 469, 161188.
Vlasenko, V. & Hutter, K. 2002 Numerical experiments on the breaking of solitary internal waves over a slope-shelf topography. J. Phys. Oceanogr. 32, 17791793.
White, B. L. & Helfrich, K. R. 2008 Gravity currents and internal waves in a stratified fluid. J. Fluid Mech. 616, 327356.
Xu, J., Xie, J., Chen, Z., Cai, S. & Long, X. 2012 Enhanced mixing induced by internal solitary waves in the South China Sea. Cont. Shelf Res. 49, 3443.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Sutherland et al. supplementary movie
Movie corresponding to experiment shown in Figure 3a

 Video (4.5 MB)
4.5 MB
VIDEO
Movies

Sutherland et al. supplementary movie
Movie corresponding to experiment shown in Figure 3a

 Video (2.3 MB)
2.3 MB
VIDEO
Movies

Sutherland et al. supplementary movie
Movie corresponding to experiment shown in Figure 3b

 Video (5.9 MB)
5.9 MB
VIDEO
Movies

Sutherland et al. supplementary movie
Movie corresponding to experiment shown in Figure 3b

 Video (3.0 MB)
3.0 MB
VIDEO
Movies

Sutherland et al. supplementary movie
Movie corresponding to simulation shown in figure 7

 Video (5.6 MB)
5.6 MB
VIDEO
Movies

Sutherland et al. supplementary movie
Movie corresponding to simulation shown in figure 7

 Video (1.8 MB)
1.8 MB
VIDEO
Movies

Sutherland et al. supplementary movie
Movie corresponding to simulation shown in figure 10

 Video (3.0 MB)
3.0 MB
VIDEO
Movies

Sutherland et al. supplementary movie
Movie corresponding to simulation shown in figure 10

 Video (1.2 MB)
1.2 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed