Skip to main content Accessibility help
×
Home

Transient effects in the translation of bubbles insonated with acoustic pulses of finite duration

  • Elena Igualada-Villodre (a1), Ana Medina-Palomo (a1), Patricia Vega-Martínez (a1) and Javier Rodríguez-Rodríguez (a1)

Abstract

The translation of a bubble under the action of an acoustic forcing finds applications in fields ranging from drug delivery to sonoluminescence. This phenomenon has been widely studied for cases where the amplitude of the forcing remains constant over time. However, in many practical applications, the duration of the forcing is not long enough for the bubble to attain a constant translational velocity, mainly due to the effect of the history force. Here, we develop a formulation, valid in the limit of very viscous flow and small-amplitude acoustic forcing, that allows us to describe the transient dynamics of bubbles driven by acoustic pulses consisting of finite numbers of cycles. We also present an asymptotic solution to this theory for the case of a finite-duration sinusoidal pressure pulse. This solution takes into account both the history integral term and the transient period that the bubble needs to achieve steady radial oscillations, the former being dominant during most of the acceleration process. Moreover, by introducing some additional assumptions, we derive a simplified formula that describes the time evolution of the bubble velocity fairly well. Using this solution, we show that the convergence to the steady translational velocity, given by the so-called Bjerknes force, occurs rather slowly, namely as $\unicode[STIX]{x1D70F}^{-1/2}$ , where $\unicode[STIX]{x1D70F}$ is the time made dimensionless with the viscous time scale of the bubble, which explains the slow convergence of the bubble velocity and stresses the importance of taking the history force into account.

Copyright

Corresponding author

Email address for correspondence: javier.rodriguez@uc3m.es

References

Hide All
Abramowitz, M. & Stegun, I. 1964 Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover.
Bjerknes, V. F. K. 1906 Fields of Force. The Columbia University Press.
Brodsky, E. E., Sturtevant, B. & Kanamori, H. 1998 Earthquakes, volcanoes, and rectified diffusion. J. Geophys. Res. 103, 2382723838.
Chen, W.-S., Matula, T. J., Brayman, A. A. & Crum, L. A. 2003 A comparison of the fragmentation thresholds and inertial cavitation doses of different ultrasound contrast agents. J. Acoust. Soc. Am. 113, 643651.
Dayton, P. A., Allen, J. S. & Ferrara, K. W. 2002 The magnitude of radiation force on ultrasound contrast agents. J. Acoust. Soc. Am. 112, 21832192.
Dollet, B., van der Meer, S. M., Garbin, V., de Jong, N., Lohse, D. & Versluis, M. 2008 Nonspherical oscillations of ultrasound contrast agent microbubbles. Ultrasound Med. Biol. 34, 14651473.
Faez, T., Emmer, M., Kooiman, K., Versluis, M., van der Steen, A. F. W. & de Jong, N. 2013 20 years of ultrasound contrast agent modeling. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 720.
Garbin, V., Dollet, B., Overvelde, M., Cojoc, D., Fabrizio, E. D., van Wijngaarden, L., Prosperetti, A., de Jong, N., Lohse, D. & Versluis, M. 2009 History force on coated microbubbles propelled by ultrasound. Phys. Fluids 21, 029003.
Keller, J. B. & Miksis, M. 1980 Bubble oscillations of large amplitude. J. Acoust. Soc. Am. 68, 628633.
Kim, I., Elghobashi, S. & Sirignano, W. A. 1998 On the equation for spherical-particle motion: effect of Reynolds and acceleration numbers. J. Fluid Mech. 367, 221253.
Leighton, T. G. 1994 The Acoustic Bubble. Academic Press.
Magnaudet, J. & Legendre, D. 1998 A note on memory-integral contributions to the force on an accelerating spherical drop at low Reynolds number. Phys. Fluids 10, 550554.
Manga, M. & Brodsky, E. E. 2006 Seismic triggering of eruptions in the far field: volcanoes and geysers. Annu. Rev. Earth Planet. Sci. 34, 263291.
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26, 883889.
Medina-Palomo, A.2015 Experimental and analytical study of the interaction between short acoustic pulses and small clouds of microbubbles. PhD thesis, Carlos III University of Madrid.
Modestino, M. A., Hashemi, S. M. H. & Haussener, S. 2016 Mass transport aspects of electrochemical solar-hydrogen generation. Energy Environ. Sci. 9, 15331551.
Prosperetti, A. 1977 Thermal effects and damping mechanisms in the forced radial oscillations of gas bubbles in liquids. J. Acoust. Soc. Am. 61, 1727.
Rensen, J., Bosman, D., Magnaudet, J., Ohl, C.-D., Prosperetti, A., Toegel, R., Versluis, M. & Lohse, D. 2001 Spiraling bubbles: how acoustic and hydrodynamic forces compete. Phys. Rev. Lett. 86, 48194822.
Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33, 4365.
Rodríguez-Rodríguez, J. & Martínez-Bazán, C.2017 Rectified diffusion of a spherical gas bubble rising in a liquid pool at finite Reynolds number (in preparation).
Romero, L. A., Torczynski, J. R. & von Winckel, G. 2014 Terminal velocity of a bubble in a vertically vibrated liquid. Phys. Fluids 26, 053301.
Stepanyants, Y. A. & Yeoh, G. H. 2009 Particle and bubble dynamics in a creeping flow. Eur. J. Mech. (B/Fluids) 28, 619629.
Sturtevant, B., Kanamori, H. & Brodsky, E. E. 1996 Seismic triggering by rectified diffusion in geothermal systems. J. Geophys. Res. 101, 2526925282.
Toegel, R., Luther, S. & Lohse, D. 2006 Viscosity destabilizes sonoluminescing bubbles. Phys. Rev. Lett. 96, 114301.
Toilliez, J. O. & Szeri, A. J. 2008 Optimized translation of microbubbles driven by acoustic fields. J. Acoust. Soc. Am. 123, 19161930.
Yang, S.-M. & Leal, L. G. 1991 A note on memory-integral contributions to the force on an accelerating spherical drop at low Reynolds number. Phys. Fluids 3, 18221824.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Transient effects in the translation of bubbles insonated with acoustic pulses of finite duration

  • Elena Igualada-Villodre (a1), Ana Medina-Palomo (a1), Patricia Vega-Martínez (a1) and Javier Rodríguez-Rodríguez (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed