Skip to main content Accessibility help

Toward second-moment closure modelling of compressible shear flows

  • Carlos A. Gomez (a1) and Sharath S. Girimaji (a1)


Compressibility profoundly affects many aspects of turbulence in high-speed flows, most notably stability characteristics, anisotropy, kinetic–potential energy interchange and spectral cascade rate. We develop a unified framework for modelling pressure-related compressibility effects by characterizing the role and action of pressure in different speed regimes. Rapid distortion theory is used to examine the physical connection between the various compressibility effects leading to model form suggestions for pressure–strain correlation, pressure–dilatation and dissipation evolution equations. The closure coefficients are established using fixed-point analysis by requiring consistency between model and DNS asymptotic behaviour in compressible homogeneous shear flow. The closure models are employed to compute high-speed mixing layers and boundary layers. The self-similar mixing-layer profile, increased Reynolds stress anisotropy and diminished mixing-layer growth rates with increasing Mach number are all well captured. High-speed boundary-layer results are also adequately replicated even without the use of advanced thermal-flux models or low-Reynolds-number corrections.


Corresponding author

Email address for correspondence:


Hide All
Adumitroaie, V., Ristorcelli, J. R. & Taulbee, D. B. 1999 Progress in Favré–Reynolds stress closures for compressible flows. Phys. Fluids 11 (9), 26962719.
ANSYS, 2010 ANSYS® FLUENT Theory Guide, ANSYS®, Inc, Southpointe 275 Technology Drive Canonsburg, PA 15317, Release 13.0.
Aupoix, B. 2004 Modelling of compressibility effects in mixing layers. J. Turbul. 5, N7.
Bertsch, R. 2010 Rapidly sheared compressible turbulence: characterization of different pressure regimes and effect of thermodynamic fluctuations. Master’s thesis, Texas A&M University.
Bertsch, R. L., Suman, S. & Girimaji, S. S. 2012 Rapid distortion analysis of high Mach number homogeneous shear flows: characterization of flow-thermodynamics interaction regimes. Phys. Fluids 24 (12), 125106.
Bowersox, R. D. W. 2009 Extension of equilibrium turbulent heat flux models to high-speed shear flows. J. Fluid Mech. 633, 6170.
Cambon, C., Coleman, G. N. & Mansour, N. N. 1993 Rapid distortion analysis and direct simulation of compressible homogeneous turbulence at finite mach number. J. Fluid Mech. 257, 641665.
Chaouat, B. & Schiestel, R. 2005 A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Phys. Fluids 17 (6), 065106.
Chinzei, N., Masuya, G., Komuro, T., Murakami, A. & Kudou, K. 1986 Spreading of two-stream supersonic turbulent mixing layers. Phys. Fluids 29 (5), 13451347.
Clemens, N. T. & Mungal, M. G. 1995 Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284, 171216.
Crow, S. C. 1968 Viscoelastic properties of fine-grained incompressible turbulence. J. Fluid Mech. 33, 120.
Duan, L., Beekman, I. & Martín, M. P. 2011 Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech. 672, 245267.
Durbin, P. A. & Speziale, C. G. 1994 Realizability of second-moment closure via stochastic analysis. J. Fluid Mech. 280, 395407.
Durbin, P. A. & Zeman, O. 1992 Rapid distortion theory for homogeneous compressed turbulence with application to modelling. J. Fluid Mech. 242, 349370.
Eliasson, P. 2005 EDGE, a Navier–Stokes solver for unstructured grids. Tech. Rep. FOI-R-0298-SE. FOI.
Eliasson, P. & Peng, S.-H. 2008 Drag prediction for the DLR-F6 wing-body configuration using the EDGE solver. J. Aircraft 45 (3), 837847.
Freund, J. B., Lele, S. K. & Moin, P. 2000 Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate. J. Fluid Mech. 421, 229267.
Fujiwara, H., Matsuo, Y. & Chuichi, A. 2000 A turbulence model for the pressure–strain correlation term accounting for compressibility effects. Intl J. Heat Fluid Flow 21 (3), 354358.
Gatski, T. B. & Jongen, T. 2000 Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows. Prog. Aeronaut. Sci. 36, 655682.
Gatski, T. B. & Speziale, C. G. 1993 On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech. 254, 5978.
Germano, M. 1992 Turbulence: the filtering approach. J. Fluid Mech. 238, 325336.
Girimaji, S. S. 1996 Fully explicit and self-consistent algebraic Reynolds stress model. Theor. Comput. Fluid Dyn. 8, 387402.
Girimaji, S. S. 1997 A Galilean invariant explicit algebraic Reynolds stress model for turbulent curved flows. Phys. Fluids 9 (4), 10671077.
Girimaji, S. S. 2000 Pressure-strain correlation modelling of complex turbulent flows. J. Fluid Mech. 422, 91123.
Girimaji, S. S. 2004 A new perspective on realizability of turbulence models. J. Fluid Mech. 512, 191210.
Girimaji, S. S. 2006 Partially-averaged Navier–Stokes model for turbulence: a Reynolds-averaged Navier–Stokes to direct numerical simulation bridging method. Trans. ASME: J. Appl. Mech. 73 (3), 413421.
Girimaji, S. S., Jeong, E. & Srinivasan, R. 2006 Partially-averaged Navier–Stokes method for turbulence: fixed point analysis and comparison with unsteady partially averaged Navier–Stokes. Trans. ASME: J. Appl. Mech. 73 (3), 422429.
Goebel, S. G. & Dutton, J. C. 1991 Experimental study of compressible turbulent mixing layers. AIAA J. 29 (4), 538546.
Hall, J. L., Dimotakis, P. E. & Rosemann, H. 1993 Experiments in nonreacting compressible shear layers. AIAA J. 31 (12), 22472254.
Hellsten, A. 2005 New advanced $k$ $\omega $ turbulence model for high-lift aerodynamics. AIAA J. 43 (9), 18571869.
Huang, S. & Fu, S. 2008 Modelling of pressure–strain correlation in compressible turbulent flow. Acta Mechanica Sin. 24 (1), 3743.
Johansson, A. V. & Hallbäck, M. 1994 Modelling of rapid pressure–strain in Reynolds-stress closures. J. Fluid Mech. 269, 143168.
Jones, W. P. & Musonge, P. 1988 Closure of the Reynolds stress and scalar flux equations. Phys. Fluids 31 (12), 35893604.
Khlifi, H., Abdallah, J., Aïcha, H. & Taïeb, L. 2011 A priori evaluation of the Pantano and Sarkar model in compressible homogeneous shear flows. C. R. Mec. 339, 2734.
Kim, J. & Park, S. O. 2010 New compressible turbulence model for free and wall-bounded shear layers. J. Turbul. 11 (10), 120.
Kline, S. J., Cantwell, B. J. & Lilley, G. M. 1982 Proc. 1980-81 AFOSR-HTTM-Stanford Conf. on Complex Turbulent Flows, Vol. 1, Stanford University.
Launder, B. E., Reece, G. J. & Rodi, W. 1975 Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech. 68, 537566.
Lavin, T. A., Girimaji, S. S., Suman, S. & Yu, H. 2012 Flow-thermodynamics interactions in rapidly-sheared compressible turbulence. Theor. Comput. Fluid Dyn. 26 (6), 501522.
Lee, K. & Girimaji, S. S. 2013 Flow-thermodynamics interactions in decaying anisotropic compressible turbulence with imposed temperature fluctuations. Theor. Comput. Fluid Dyn. 27 (1–2), 115131.
Lee, K., Girimaji, S. S. & Kerimo, J. 2008 Validity of Taylor’s dissipation-viscosity independence postulate in variable-viscosity turbulent fluid mixtures. Phys. Rev. Lett. 101 (7), 074501.
Lien, F. S. & Leschziner, M. A. 1994 Assessment of turbulent-transport models including nonlinear RNG eddy-viscosity formulation and second-moment closure for flow over a backward-facing step. Comput. Fluids 23 (8), 9831004.
Livescu, D., Jaberi, F. A. & Madnia, C. K. 2002 The effects of heat release on the energy exchange in reacting turbulent shear flow. J. Fluid Mech. 450, 3566.
Livescu, D. & Madnia, C. K. 2004 Small scale structure of homogeneous turbulent shear flow. Phys. Fluids 16 (8), 28642876.
Livescu, D. & Ristorcelli, J. R. 2007 Buoyancy-driven variable-density turbulence. J. Fluid Mech. 591, 4371.
Livescu, D. & Ristorcelli, J. R. 2008 Variable-density mixing in bouyancy-driven turbulence. J. Fluid Mech. 605, 145180.
Lumley, J. L. 1978 Computational modeling of turbulent flows. Adv. Appl. Mech. 18, 123176.
Marzougui, H., Khlifi, H. & Lili, T. 2005 Extension of the Launder, Reece and Rodi model on compressible homogeneous shear flow. Eur. Phys. J. B 45, 147154.
Menter, F. R. 1994 Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (8), 15981605.
Mishra, A. A. & Girimaji, S. S. 2010 Pressure-strain correlation modeling: towards achieving consistency with rapid distortion theory. Flow Turbul. Combust. 85, 593619.
Owen, F. K. & Horstman, C. C. 1972 On the structure of hypersonic turbulent boundary layers. J. Fluid Mech. 53, 611636.
Pantano, C. & Sarkar, S. 2002 A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329371.
Papamoschou, D. & Roshko, A. 1988 The compressible turbulent shear layer: an experimental study. J. Fluid Mech. 197, 453477.
Park, C. H. & Park, S. O. 2005 A compressible turbulence model for the pressure–strain correlation. J. Turbul. 6 (2), 125.
Pennisi, S. & Trovato, M. 1987 On the irreducibility of Professor G. F. Smith’s representations for isotropic functions. Intl J. Engng Sci. 25, 10591065.
Pope, S. B. 1975 A more general effective-viscosity hypothesis. J. Fluid Mech. 72 (2), 331340.
Pope, S. B. 1994 Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech. 26, 2363.
Pope, S. B. 2000 Turbulent Flows, 1st edn. Cambridge University Press.
Reynolds, W. C. 1976 Computation of turbulent flows. Annu. Rev. Fluid Mech. 8, 183208.
Ristorcelli, J. R. 1993 A representation for the turbulent mass flux contribution to Reynolds-stress and two-equation closure for compressible turbulence. ICASE Rep. 93-88. NASA Langley Research Center, Hampton, VA.
Ristorcelli, J. R., Lumley, J. L. & Abid, R. 1995 A rapid-pressure covariance representation consistent with the Taylor–Proudman theorem materially frame indifferent in the two-dimensional limit. J. Fluid Mech. 292, 111152.
Rodi, W. 1976 A new algebraic relation for calculating the Reynolds stresses. Z. Angew. Math. Mech. 56, T219T221.
Rotta, J. C. 1951 Statistiche theorie nichthomogener turbulenz. Z. Phys. 129, 547572.
Samimy, M. & Elliot, G. S. 1990 Effects of compressibility on the characteristics of free shear layers. AIAA J. 28 (3), 439445.
Sarkar, S. 1992 The pressure-dilatation correlation in compressible flows. Phys. Fluids 4 (12), 26742682.
Sarkar, S. 1995 The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163186.
Sarkar, S., Erlebacher, G. & Hussaini, M. Y. 1991a The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech. 227, 473493.
Sarkar, S., Erlebacher, G. & Hussaini, M. Y. 1991b Direct simulation of compressible turbulence in a shear flow. Theor. Comput. Fluid Dyn. 2, 291305.
Schlichting, H. & Gersten, K. 2000 Boundary Layer Theory, 8th edn. Springer.
Simone, A., Coleman, G. N. & Cambon, C. 1997 The effect of compressibility on turbulent shear flow: a rapid-distortion-theory and direct-numerical-simulation study. J. Fluid Mech. 330, 307338.
Sjögren, T. & Johansson, A. V. 2000 Development and calibration of algebraic nonlinear models for terms in the Reynolds stress transport equations. Phys. Fluids 12 (6), 15541572.
Smith, G. F. 1971 On isotropic funcions of symmetric tensors, skew-symmetric tensors and vectors. Intl J. Engng Sci. 9, 899916.
Smits, A. J. & Dussauge, J. 2006 Turbulent Shear Layers in Supersonic Flow, 2nd edn. Springer Science+Business Media.
Speziale, C. G. 1991 Analytical methods for the development of Reynolds-stress closures in turbulence. Annu. Rev. Fluid Mech. 23, 107157.
Speziale, C. G., Gatski, T. B. & Sarkar, S. 1992 On testing models for the pressure–strain correlation of turbulence using direct simulations. Phys. Fluids 4 (12), 28872899.
Speziale, C. G., Sarkar, S. & Gatski, T. B. 1991 Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech. 227, 245272.
Suman, S. & Girimaji, S. S. 2010 On the invariance of compressible Navier–Stokes and energy equations subject to density-weighted filtering. Flow Turbul. Combust. 85 (3), 383396.
Sutherland, W. 1893 The viscosity of gases and molecular force. Phil. Mag. Ser. 5 36 (223), 507531.
Tavoularis, S. & Corrsin, S. 1981 Experiments in nearly homogeneous shear flow with a uniform mean temperature gradient. Part 1. J. Fluid Mech. 104, 311347.
Thacker, W. D., Sarkar, S. & Gatski, T. B. 2007 Analyzing the influence of compressibility on the rapid pressure–strain rate correlation in turbulent shear flows. Theor. Comput. Fluid Dyn. 21 (3), 171199.
Vreman, A. W., Sandham, N. D. & Luo, K. H. 1996 Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech. 320, 235258.
Wallin, S. & Johansson, A. V. 2000 An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech. 403, 89132.
Walz, A. 1969 Boundary Layers of Flow and Temperature, 1st edn. MIT.
White, F. M. 1991 Viscous Fluid Flow, 2nd edn. McGraw-Hill.
Wilcox, D. C. 1988 Reassesment of the scale-determining equation for advanced turbulence models. AIAA J. 26 (11), 12991310.
Wilcox, D. C. 1993 Turbulence Modelling for CFD, 1st edn. DCW Industries.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed