Adumitroaie, V., Ristorcelli, J. R. & Taulbee, D. B.
1999
Progress in Favré–Reynolds stress closures for compressible flows. Phys. Fluids
11
(9), 2696–2719.
ANSYS,
2010 ANSYS^{®} FLUENT Theory Guide, ANSYS^{®}, Inc, Southpointe 275 Technology Drive Canonsburg, PA 15317, Release 13.0.
Aupoix, B.
2004
Modelling of compressibility effects in mixing layers. J. Turbul.
5, N7.
Bertsch, R.
2010 Rapidly sheared compressible turbulence: characterization of different pressure regimes and effect of thermodynamic fluctuations. Master’s thesis, Texas A&M University.
Bertsch, R. L., Suman, S. & Girimaji, S. S.
2012
Rapid distortion analysis of high Mach number homogeneous shear flows: characterization of flow-thermodynamics interaction regimes. Phys. Fluids
24
(12), 125106.
Bowersox, R. D. W.
2009
Extension of equilibrium turbulent heat flux models to high-speed shear flows. J. Fluid Mech.
633, 61–70.
Cambon, C., Coleman, G. N. & Mansour, N. N.
1993
Rapid distortion analysis and direct simulation of compressible homogeneous turbulence at finite mach number. J. Fluid Mech.
257, 641–665.
Chaouat, B. & Schiestel, R.
2005
A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Phys. Fluids
17
(6), 065106.
Chinzei, N., Masuya, G., Komuro, T., Murakami, A. & Kudou, K.
1986
Spreading of two-stream supersonic turbulent mixing layers. Phys. Fluids
29
(5), 1345–1347.
Clemens, N. T. & Mungal, M. G.
1995
Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech.
284, 171–216.
Crow, S. C.
1968
Viscoelastic properties of fine-grained incompressible turbulence. J. Fluid Mech.
33, 1–20.
Duan, L., Beekman, I. & Martín, M. P.
2011
Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number. J. Fluid Mech.
672, 245–267.
Durbin, P. A. & Speziale, C. G.
1994
Realizability of second-moment closure via stochastic analysis. J. Fluid Mech.
280, 395–407.
Durbin, P. A. & Zeman, O.
1992
Rapid distortion theory for homogeneous compressed turbulence with application to modelling. J. Fluid Mech.
242, 349–370.
Eliasson, P.
2005 EDGE, a Navier–Stokes solver for unstructured grids. Tech. Rep. FOI-R-0298-SE. FOI.
Eliasson, P. & Peng, S.-H.
2008
Drag prediction for the DLR-F6 wing-body configuration using the EDGE solver. J. Aircraft
45
(3), 837–847.
Freund, J. B., Lele, S. K. & Moin, P.
2000
Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate. J. Fluid Mech.
421, 229–267.
Fujiwara, H., Matsuo, Y. & Chuichi, A.
2000
A turbulence model for the pressure–strain correlation term accounting for compressibility effects. Intl J. Heat Fluid Flow
21
(3), 354–358.
Gatski, T. B. & Jongen, T.
2000
Nonlinear eddy viscosity and algebraic stress models for solving complex turbulent flows. Prog. Aeronaut. Sci.
36, 655–682.
Gatski, T. B. & Speziale, C. G.
1993
On explicit algebraic stress models for complex turbulent flows. J. Fluid Mech.
254, 59–78.
Germano, M.
1992
Turbulence: the filtering approach. J. Fluid Mech.
238, 325–336.
Girimaji, S. S.
1996
Fully explicit and self-consistent algebraic Reynolds stress model. Theor. Comput. Fluid Dyn.
8, 387–402.
Girimaji, S. S.
1997
A Galilean invariant explicit algebraic Reynolds stress model for turbulent curved flows. Phys. Fluids
9
(4), 1067–1077.
Girimaji, S. S.
2000
Pressure-strain correlation modelling of complex turbulent flows. J. Fluid Mech.
422, 91–123.
Girimaji, S. S.
2004
A new perspective on realizability of turbulence models. J. Fluid Mech.
512, 191–210.
Girimaji, S. S.
2006
Partially-averaged Navier–Stokes model for turbulence: a Reynolds-averaged Navier–Stokes to direct numerical simulation bridging method. Trans. ASME: J. Appl. Mech.
73
(3), 413–421.
Girimaji, S. S., Jeong, E. & Srinivasan, R.
2006
Partially-averaged Navier–Stokes method for turbulence: fixed point analysis and comparison with unsteady partially averaged Navier–Stokes. Trans. ASME: J. Appl. Mech.
73
(3), 422–429.
Goebel, S. G. & Dutton, J. C.
1991
Experimental study of compressible turbulent mixing layers. AIAA J.
29
(4), 538–546.
Hall, J. L., Dimotakis, P. E. & Rosemann, H.
1993
Experiments in nonreacting compressible shear layers. AIAA J.
31
(12), 2247–2254.
Hellsten, A.
2005
New advanced
$k$
–
$\omega $
turbulence model for high-lift aerodynamics. AIAA J.
43
(9), 1857–1869.
Huang, S. & Fu, S.
2008
Modelling of pressure–strain correlation in compressible turbulent flow. Acta Mechanica Sin.
24
(1), 37–43.
Johansson, A. V. & Hallbäck, M.
1994
Modelling of rapid pressure–strain in Reynolds-stress closures. J. Fluid Mech.
269, 143–168.
Jones, W. P. & Musonge, P.
1988
Closure of the Reynolds stress and scalar flux equations. Phys. Fluids
31
(12), 3589–3604.
Khlifi, H., Abdallah, J., Aïcha, H. & Taïeb, L.
2011
A priori evaluation of the Pantano and Sarkar model in compressible homogeneous shear flows. C. R. Mec.
339, 27–34.
Kim, J. & Park, S. O.
2010
New compressible turbulence model for free and wall-bounded shear layers. J. Turbul.
11
(10), 1–20.
Kline, S. J., Cantwell, B. J. & Lilley, G. M.
1982
Proc. 1980-81 AFOSR-HTTM-Stanford Conf. on Complex Turbulent Flows, Vol. 1, Stanford University.
Launder, B. E., Reece, G. J. & Rodi, W.
1975
Progress in the development of a Reynolds-stress turbulence closure. J. Fluid Mech.
68, 537–566.
Lavin, T. A., Girimaji, S. S., Suman, S. & Yu, H.
2012
Flow-thermodynamics interactions in rapidly-sheared compressible turbulence. Theor. Comput. Fluid Dyn.
26
(6), 501–522.
Lee, K. & Girimaji, S. S.
2013
Flow-thermodynamics interactions in decaying anisotropic compressible turbulence with imposed temperature fluctuations. Theor. Comput. Fluid Dyn.
27
(1–2), 115–131.
Lee, K., Girimaji, S. S. & Kerimo, J.
2008
Validity of Taylor’s dissipation-viscosity independence postulate in variable-viscosity turbulent fluid mixtures. Phys. Rev. Lett.
101
(7), 074501.
Lien, F. S. & Leschziner, M. A.
1994
Assessment of turbulent-transport models including nonlinear RNG eddy-viscosity formulation and second-moment closure for flow over a backward-facing step. Comput. Fluids
23
(8), 983–1004.
Livescu, D., Jaberi, F. A. & Madnia, C. K.
2002
The effects of heat release on the energy exchange in reacting turbulent shear flow. J. Fluid Mech.
450, 35–66.
Livescu, D. & Madnia, C. K.
2004
Small scale structure of homogeneous turbulent shear flow. Phys. Fluids
16
(8), 2864–2876.
Livescu, D. & Ristorcelli, J. R.
2007
Buoyancy-driven variable-density turbulence. J. Fluid Mech.
591, 43–71.
Livescu, D. & Ristorcelli, J. R.
2008
Variable-density mixing in bouyancy-driven turbulence. J. Fluid Mech.
605, 145–180.
Lumley, J. L.
1978
Computational modeling of turbulent flows. Adv. Appl. Mech.
18, 123–176.
Marzougui, H., Khlifi, H. & Lili, T.
2005
Extension of the Launder, Reece and Rodi model on compressible homogeneous shear flow. Eur. Phys. J. B
45, 147–154.
Menter, F. R.
1994
Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J.
32
(8), 1598–1605.
Mishra, A. A. & Girimaji, S. S.
2010
Pressure-strain correlation modeling: towards achieving consistency with rapid distortion theory. Flow Turbul. Combust.
85, 593–619.
Owen, F. K. & Horstman, C. C.
1972
On the structure of hypersonic turbulent boundary layers. J. Fluid Mech.
53, 611–636.
Pantano, C. & Sarkar, S.
2002
A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech.
451, 329–371.
Papamoschou, D. & Roshko, A.
1988
The compressible turbulent shear layer: an experimental study. J. Fluid Mech.
197, 453–477.
Park, C. H. & Park, S. O.
2005
A compressible turbulence model for the pressure–strain correlation. J. Turbul.
6
(2), 1–25.
Pennisi, S. & Trovato, M.
1987
On the irreducibility of Professor G. F. Smith’s representations for isotropic functions. Intl J. Engng Sci.
25, 1059–1065.
Pope, S. B.
1975
A more general effective-viscosity hypothesis. J. Fluid Mech.
72
(2), 331–340.
Pope, S. B.
1994
Lagrangian PDF methods for turbulent flows. Annu. Rev. Fluid Mech.
26, 23–63.
Pope, S. B.
2000
Turbulent Flows, 1st edn. Cambridge University Press.
Reynolds, W. C.
1976
Computation of turbulent flows. Annu. Rev. Fluid Mech.
8, 183–208.
Ristorcelli, J. R.
1993 A representation for the turbulent mass flux contribution to Reynolds-stress and two-equation closure for compressible turbulence. ICASE Rep. 93-88. NASA Langley Research Center, Hampton, VA.
Ristorcelli, J. R., Lumley, J. L. & Abid, R.
1995
A rapid-pressure covariance representation consistent with the Taylor–Proudman theorem materially frame indifferent in the two-dimensional limit. J. Fluid Mech.
292, 111–152.
Rodi, W.
1976
A new algebraic relation for calculating the Reynolds stresses. Z. Angew. Math. Mech.
56, T219–T221.
Rotta, J. C.
1951
Statistiche theorie nichthomogener turbulenz. Z. Phys.
129, 547–572.
Samimy, M. & Elliot, G. S.
1990
Effects of compressibility on the characteristics of free shear layers. AIAA J.
28
(3), 439–445.
Sarkar, S.
1992
The pressure-dilatation correlation in compressible flows. Phys. Fluids
4
(12), 2674–2682.
Sarkar, S.
1995
The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech.
282, 163–186.
Sarkar, S., Erlebacher, G. & Hussaini, M. Y.
1991a
The analysis and modelling of dilatational terms in compressible turbulence. J. Fluid Mech.
227, 473–493.
Sarkar, S., Erlebacher, G. & Hussaini, M. Y.
1991b
Direct simulation of compressible turbulence in a shear flow. Theor. Comput. Fluid Dyn.
2, 291–305.
Schlichting, H. & Gersten, K.
2000
Boundary Layer Theory, 8th edn. Springer.
Simone, A., Coleman, G. N. & Cambon, C.
1997
The effect of compressibility on turbulent shear flow: a rapid-distortion-theory and direct-numerical-simulation study. J. Fluid Mech.
330, 307–338.
Sjögren, T. & Johansson, A. V.
2000
Development and calibration of algebraic nonlinear models for terms in the Reynolds stress transport equations. Phys. Fluids
12
(6), 1554–1572.
Smith, G. F.
1971
On isotropic funcions of symmetric tensors, skew-symmetric tensors and vectors. Intl J. Engng Sci.
9, 899–916.
Smits, A. J. & Dussauge, J.
2006
Turbulent Shear Layers in Supersonic Flow, 2nd edn. Springer Science+Business Media.
Speziale, C. G.
1991
Analytical methods for the development of Reynolds-stress closures in turbulence. Annu. Rev. Fluid Mech.
23, 107–157.
Speziale, C. G., Gatski, T. B. & Sarkar, S.
1992
On testing models for the pressure–strain correlation of turbulence using direct simulations. Phys. Fluids
4
(12), 2887–2899.
Speziale, C. G., Sarkar, S. & Gatski, T. B.
1991
Modelling the pressure–strain correlation of turbulence: an invariant dynamical systems approach. J. Fluid Mech.
227, 245–272.
Suman, S. & Girimaji, S. S.
2010
On the invariance of compressible Navier–Stokes and energy equations subject to density-weighted filtering. Flow Turbul. Combust.
85
(3), 383–396.
Sutherland, W.
1893
The viscosity of gases and molecular force. Phil. Mag. Ser. 5
36
(223), 507–531.
Tavoularis, S. & Corrsin, S.
1981
Experiments in nearly homogeneous shear flow with a uniform mean temperature gradient. Part 1. J. Fluid Mech.
104, 311–347.
Thacker, W. D., Sarkar, S. & Gatski, T. B.
2007
Analyzing the influence of compressibility on the rapid pressure–strain rate correlation in turbulent shear flows. Theor. Comput. Fluid Dyn.
21
(3), 171–199.
Vreman, A. W., Sandham, N. D. & Luo, K. H.
1996
Compressible mixing layer growth rate and turbulence characteristics. J. Fluid Mech.
320, 235–258.
Wallin, S. & Johansson, A. V.
2000
An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. J. Fluid Mech.
403, 89–132.
Walz, A.
1969
Boundary Layers of Flow and Temperature, 1st edn. MIT.
White, F. M.
1991
Viscous Fluid Flow, 2nd edn. McGraw-Hill.
Wilcox, D. C.
1988
Reassesment of the scale-determining equation for advanced turbulence models. AIAA J.
26
(11), 1299–1310.
Wilcox, D. C.
1993
Turbulence Modelling for CFD, 1st edn. DCW Industries.