Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-27T17:59:22.736Z Has data issue: false hasContentIssue false

Slippery rheotaxis: new regimes for guiding wall-bound microswimmers

Published online by Cambridge University Press:  17 July 2023

Soumyajit Ghosh
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Dhanbad (Indian School of Mines), Dhanbad, Jharkhand 826004, India
Antarip Poddar*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Dhanbad (Indian School of Mines), Dhanbad, Jharkhand 826004, India
*
Email address for correspondence: antarip@iitism.ac.in

Abstract

The near-surface locomotion of microswimmers under the action of background flows has been studied extensively, whereas the intervening effects of complex surface properties remain hitherto unknown. Intending to delineate the shear-driven dynamics near a planar slippery wall, we adopt the squirmer model of microswimmers and employ a three-dimensional analytical-numerical framework in bispherical coordinates. It is interpreted that both the self-propulsion and the external shear flow are redistributed due to hydrodynamic slippage, followed by modulations in the thrust torque on the microswimmer. Phase portraits of the quasi-steady dynamics indicate that the stable upstream swimming states, known as ‘rheotaxis’, are significantly modulated by the slip length compared with the no-slip case. For puller swimmers, an intricate interplay among the modulated interfacial friction near a slippery surface, velocity gradients of the shear flow and the strength of the squirmer parameter promotes a critical shear rate beyond which a wide range of new rheotactic states exist. Consequently, an escaping microswimmer may exhibit rheotaxis or an existing rheotactic state annihilates due to crashing. Although stable states are absent for pushers without steric interactions, transitions from escaping and undamped oscillations to ‘rheotaxis’ occur in the presence of wall repulsion, but only until the other characteristics are overwhelmed by escape due to enhanced shear. Disclosing the ability of hydrodynamic slippage in broadening the scope of migration against a background flow for a wide range of parameters, the present work paves the way for investigations on the entrapment of microswimmers near complex pathways or sorting using selective rheotaxis.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asmolov, E.S., Zhou, J., Schmid, F. & Vinogradova, O.I. 2013 Effective slip-length tensor for a flow over weakly slipping stripes. Phys. Rev. E 88 (2), 023004.10.1103/PhysRevE.88.023004CrossRefGoogle ScholarPubMed
Bechinger, C., Di Leonardo, R., Löwen, H., Reichhardt, C., Volpe, G. & Volpe, G. 2016 Active particles in complex and crowded environments. Rev. Mod. Phys. 88 (4), 045006.10.1103/RevModPhys.88.045006CrossRefGoogle Scholar
Behera, N., Poddar, A. & Chakraborty, S. 2023 Eccentricity-induced dielectrophoretic migration of a compound drop in a uniform external electric field. J. Fluid Mech. 963, A17.10.1017/jfm.2023.339CrossRefGoogle Scholar
Berke, A.P., Turner, L., Berg, H.C. & Lauga, E. 2008 Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101 (3), 038102.10.1103/PhysRevLett.101.038102CrossRefGoogle ScholarPubMed
Blake, J.R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1), 199208.10.1017/S002211207100048XCrossRefGoogle Scholar
Bocquet, L. & Charlaix, E. 2010 Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39 (3), 10731095.10.1039/B909366BCrossRefGoogle ScholarPubMed
Bretherton, F. & Rothschild, N.M.V. 1961 Rheotaxis of spermatozoa. Proc. R. Soc. Lond. B 153 (953), 490502.Google Scholar
Bunea, A.-I. & Taboryski, R. 2020 Recent advances in microswimmers for biomedical applications. Micromachines 11 (12), 1048.10.3390/mi11121048CrossRefGoogle ScholarPubMed
Chakraborty, S. 2008 Generalization of interfacial electrohydrodynamics in the presence of hydrophobic interactions in narrow fluidic confinements. Phys. Rev. Lett. 100 (9), 097801.10.1103/PhysRevLett.100.097801CrossRefGoogle ScholarPubMed
Chen, L., et al. 2021 Cost-effective, high-yield production of biotemplated catalytic tubular micromotors as self-propelled microcleaners for water treatment. ACS Appl. Mater. Interfaces 13 (26), 3122631235.10.1021/acsami.1c03595CrossRefGoogle ScholarPubMed
Chilukuri, S., Collins, C.H. & Underhill, P.T. 2014 Impact of external flow on the dynamics of swimming microorganisms near surfaces. J. Phys.: Condens. Matter 26 (11), 115101.Google ScholarPubMed
Chisholm, N.G., Legendre, D., Lauga, E. & Khair, A.S. 2016 A squirmer across reynolds numbers. J. Fluid Mech. 796, 233256.10.1017/jfm.2016.239CrossRefGoogle Scholar
Choi, C.-H. & Kim, C.-J. 2006 Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface. Phys. Rev. Lett. 96 (6), 066001.10.1103/PhysRevLett.96.066001CrossRefGoogle Scholar
Costerton, J.W., Cheng, K., Geesey, G.G., Ladd, T.I., Nickel, J.C., Dasgupta, M. & Marrie, T.J. 1987 Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41 (1), 435464.10.1146/annurev.mi.41.100187.002251CrossRefGoogle ScholarPubMed
Crowdy, D. 2011 Treadmilling swimmers near a no-slip wall at low Reynolds number. Intl J. Non-Linear Mech. 46 (4), 577585.10.1016/j.ijnonlinmec.2010.12.010CrossRefGoogle Scholar
Crowdy, D.G. 2013 Wall effects on self-diffusiophoretic janus particles: a theoretical study. J. Fluid Mech. 735, 473498.10.1017/jfm.2013.510CrossRefGoogle Scholar
Daddi-Moussa-Ider, A., Lisicki, M., Hoell, C. & Löwen, H. 2018 Swimming trajectories of a three-sphere microswimmer near a wall. J. Chem. Phys. 148 (13), 134904.10.1063/1.5021027CrossRefGoogle ScholarPubMed
Das, S., Garg, A., Campbell, A.I., Howse, J., Sen, A., Velegol, D., Golestanian, R. & Ebbens, S.J. 2015 Boundaries can steer active janus spheres. Nat. Commun. 6, 8999.10.1038/ncomms9999CrossRefGoogle ScholarPubMed
Denissenko, P., Kantsler, V., Smith, D.J. & Kirkman-Brown, J. 2012 Human spermatozoa migration in microchannels reveals boundary-following navigation. Proc. Natl Acad. Sci. USA 109 (21), 80078010.10.1073/pnas.1202934109CrossRefGoogle ScholarPubMed
Di Leonardo, R., Dell'Arciprete, D., Angelani, L. & Iebba, V. 2011 Swimming with an image. Phys. Rev. Lett. 106 (3), 038101.10.1103/PhysRevLett.106.038101CrossRefGoogle ScholarPubMed
Drescher, K., Dunkel, J., Cisneros, L.H., Ganguly, S. & Goldstein, R.E. 2011 Fluid dynamics and noise in bacterial cell–cell and cell–surface scattering. Proc. Natl Acad. Sci. USA 108 (27), 1094010945.10.1073/pnas.1019079108CrossRefGoogle ScholarPubMed
Elgeti, J. & Gompper, G. 2013 Wall accumulation of self-propelled spheres. Europhys. Lett. 101 (4), 48003.10.1209/0295-5075/101/48003CrossRefGoogle Scholar
Escudero, A., Hunter, C., Roberts, J., Helwig, K. & Pahl, O. 2020 Pharmaceuticals removal and nutrient recovery from wastewaters by Chlamydomonas acidophila. Biochem. Engng J. 156, 107517.10.1016/j.bej.2020.107517CrossRefGoogle Scholar
Gentili, D., Bolognesi, G., Giacomello, A., Chinappi, M. & Casciola, C. 2014 Pressure effects on water slippage over silane-coated rough surfaces: pillars and holes. Microfluid Nanofluid 16 (6), 10091018.10.1007/s10404-014-1376-0CrossRefGoogle Scholar
Guidobaldi, H.A., Jeyaram, Y., Condat, C., Oviedo, M., Berdakin, I., Moshchalkov, V., Giojalas, L., Silhanek, A. & Marconi, V. 2015 Disrupting the wall accumulation of human sperm cells by artificial corrugation. Biomicrofluidics 9 (2), 024122.10.1063/1.4918979CrossRefGoogle ScholarPubMed
Happel, J. & Brenner, H. 1983 The motion of a rigid particle of arbitrary shape in an unbounded fluid. In Low Reynolds Number Hydrodynamics (ed. R.J. Moreau), pp. 159–234. Springer.10.1007/978-94-009-8352-6_5CrossRefGoogle Scholar
Harkes, G., Dankert, J. & Feijen, J. 1992 Bacterial migration along solid surfaces. Appl. Environ. Microbiol. 58 (5), 15001505.10.1128/aem.58.5.1500-1505.1992CrossRefGoogle ScholarPubMed
Hill, J., Kalkanci, O., McMurry, J.L. & Koser, H. 2007 Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys. Rev. Lett. 98 (6), 068101.10.1103/PhysRevLett.98.068101CrossRefGoogle ScholarPubMed
Hu, J., Wysocki, A., Winkler, R.G. & Gompper, G. 2015 Physical sensing of surface properties by microswimmers–directing bacterial motion via wall slip. Sci. Rep. 5, 9586.10.1038/srep09586CrossRefGoogle ScholarPubMed
Huang, D.M., Sendner, C., Horinek, D., Netz, R.R. & Bocquet, L. 2008 Water slippage versus contact angle: a quasiuniversal relationship. Phys. Rev. Lett. 101 (22), 226101.10.1103/PhysRevLett.101.226101CrossRefGoogle Scholar
Ishikawa, T., Simmonds, M. & Pedley, T.J. 2006 Hydrodynamic interaction of two swimming model micro-organisms. J. Fluid Mech. 568, 119160.10.1017/S0022112006002631CrossRefGoogle Scholar
Ishimoto, K. 2017 Guidance of microswimmers by wall and flow: thigmotaxis and rheotaxis of unsteady squirmers in two and three dimensions. Phys. Rev. E 96, 043103.10.1103/PhysRevE.96.043103CrossRefGoogle Scholar
Ishimoto, K. & Crowdy, D.G. 2017 Dynamics of a treadmilling microswimmer near a no-slip wall in simple shear. J. Fluid Mech. 821, 647667.10.1017/jfm.2017.220CrossRefGoogle Scholar
Ishimoto, K. & Gaffney, E.A. 2013 Squirmer dynamics near a boundary. Phys. Rev. E 88, 062702.10.1103/PhysRevE.88.062702CrossRefGoogle Scholar
Ishimoto, K. & Gaffney, E.A. 2015 Fluid flow and sperm guidance: a simulation study of hydrodynamic sperm rheotaxis. J. R. Soc. Interface 12 (106), 20150172.10.1098/rsif.2015.0172CrossRefGoogle ScholarPubMed
Joseph, P., Cottin-Bizonne, C., Benoit, J.-M., Ybert, C., Journet, C., Tabeling, P. & Bocquet, L. 2006 Slippage of water past superhydrophobic carbon nanotube forests in microchannels. Phys. Rev. Lett. 97 (15), 156104.10.1103/PhysRevLett.97.156104CrossRefGoogle ScholarPubMed
Kantsler, V., Dunkel, J., Blayney, M. & Goldstein, R.E. 2014 Rheotaxis facilitates upstream navigation of mammalian sperm cells. Elife 3, e02403.Google ScholarPubMed
Kantsler, V., Dunkel, J., Polin, M. & Goldstein, R.E. 2013 Ciliary contact interactions dominate surface scattering of swimming eukaryotes. Proc. Natl Acad. Sci. USA 110 (4), 11871192.10.1073/pnas.1210548110CrossRefGoogle ScholarPubMed
Kaya, T. & Koser, H. 2012 Direct upstream motility in Escherichia coli. Biophys. J. 102 (7), 15141523.10.1016/j.bpj.2012.03.001CrossRefGoogle ScholarPubMed
Ketzetzi, S., De Graaf, J., Doherty, R.P. & Kraft, D.J. 2020 Slip length dependent propulsion speed of catalytic colloidal swimmers near walls. Phys. Rev. Lett. 124 (4), 048002.10.1103/PhysRevLett.124.048002CrossRefGoogle ScholarPubMed
Klein, J.D., Clapp, A.R. & Dickinson, R.B. 2003 Direct measurement of interaction forces between a single bacterium and a flat plate. J. Colloid Interface Sci. 261 (2), 379385.10.1016/S0021-9797(03)00095-XCrossRefGoogle Scholar
Kumar, M. & Ardekani, A.M. 2019 Effect of external shear flow on sperm motility. Soft Matt. 15 (31), 62696277.10.1039/C9SM00717BCrossRefGoogle ScholarPubMed
Lauga, E., Brenner, M. & Stone, H. 2007 Microfluidics: The No-Slip Boundary Condition. Springer Handbook of Experimental Fluid Mechanics, pp. 12191240. Springer.Google Scholar
Lauga, E., DiLuzio, W.R., Whitesides, G.M. & Stone, H.A. 2006 Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90 (2), 400412.10.1529/biophysj.105.069401CrossRefGoogle ScholarPubMed
Lauga, E. & Powers, T.R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72 (9), 096601.10.1088/0034-4885/72/9/096601CrossRefGoogle Scholar
Lee, C., Choi, C.-H. & Kim, C.-J. 2008 Structured surfaces for a giant liquid slip. Phys. Rev. Lett. 101 (6), 064501.10.1103/PhysRevLett.101.064501CrossRefGoogle ScholarPubMed
Lee, S.H. & Leal, L.G. 1980 Motion of a sphere in the presence of a plane interface. Part 2. An exact solution in bipolar co-ordinates. J. Fluid Mech. 98 (1), 193224.10.1017/S0022112080000109CrossRefGoogle Scholar
Lemelle, L., Palierne, J.-F., Chatre, E., Vaillant, C. & Place, C. 2013 Curvature reversal of the circular motion of swimming bacteria probes for slip at solid/liquid interfaces. Soft Matt. 9 (41), 97599762.10.1039/c3sm51426aCrossRefGoogle Scholar
Li, G., Bensson, J., Nisimova, L., Munger, D., Mahautmr, P., Tang, J.X., Maxey, M.R. & Brun, Y.V. 2011 Accumulation of swimming bacteria near a solid surface. Phys. Rev. E 84 (4), 041932.10.1103/PhysRevE.84.041932CrossRefGoogle Scholar
Li, G. & Tang, J.X. 2009 Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Phys. Rev. Lett. 103 (7), 078101.10.1103/PhysRevLett.103.078101CrossRefGoogle Scholar
Li, G.-J. & Ardekani, A.M. 2014 Hydrodynamic interaction of microswimmers near a wall. Phys. Rev. E 90, 013010.10.1103/PhysRevE.90.013010CrossRefGoogle ScholarPubMed
Li, Y., Tang, S., Cong, Z., Lu, D., Yang, Q., Chen, Q., Zhang, X. & Wu, S. 2022 Biohybrid bacterial microswimmers with metal-organic framework exoskeletons enable cytoprotection and active drug delivery in a harsh environment. Mater. Today Chem. 23, 100609.10.1016/j.mtchem.2021.100609CrossRefGoogle Scholar
Lighthill, M. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Maths 5 (2), 109118.10.1002/cpa.3160050201CrossRefGoogle Scholar
Lintuvuori, J.S., Brown, A.T., Stratford, K. & Marenduzzo, D. 2016 Hydrodynamic oscillations and variable swimming speed in squirmers close to repulsive walls. Soft Matt. 12, 79597968.10.1039/C6SM01353HCrossRefGoogle ScholarPubMed
Lopez, D. & Lauga, E. 2014 Dynamics of swimming bacteria at complex interfaces. Phys. Fluids 26 (7), 400412.10.1063/1.4887255CrossRefGoogle Scholar
Loussaief, H., Pasol, L. & Feuillebois, F. 2015 Motion of a spherical particle in a viscous fluid along a slip wall. Q. J. Mech. Appl. Maths 68 (2), 115144.10.1093/qjmam/hbv001CrossRefGoogle Scholar
Maduar, S.R., Belyaev, A.V., Lobaskin, V. & Vinogradova, O.I. 2015 Electrohydrodynamics near hydrophobic surfaces. Phys. Rev. Lett. 114 (11), 118301.10.1103/PhysRevLett.114.118301CrossRefGoogle ScholarPubMed
Magdanz, V., Medina-Sánchez, M., Schwarz, L., Xu, H., Elgeti, J. & Schmidt, O.G. 2017 Spermatozoa as functional components of robotic microswimmers. Adv. Mater. 29 (24), 1606301.10.1002/adma.201606301CrossRefGoogle ScholarPubMed
Mantripragada, V.T. & Poddar, A. 2022 Rheology dictated spreading regimes of a non-isothermal sessile drop. J. Fluid Mech. 951, A42.10.1017/jfm.2022.900CrossRefGoogle Scholar
Marcos, , Fu, H.C., Powers, T.R. & Stocker, R. 2012 Bacterial rheotaxis. Proc. Natl Acad. Sci. USA 109 (13), 47804785.10.1073/pnas.1120955109CrossRefGoogle ScholarPubMed
Mathijssen, A.J., Figueroa-Morales, N., Junot, G., Clément, É., Lindner, A. & Zöttl, A. 2019 Oscillatory surface rheotaxis of swimming E. coli bacteria. Nat. Commun. 10 (1), 112.10.1038/s41467-019-11360-0CrossRefGoogle ScholarPubMed
Michelin, S. & Lauga, E. 2014 Phoretic self-propulsion at finite Péclet numbers. J. Fluid Mech. 747, 572604.10.1017/jfm.2014.158CrossRefGoogle Scholar
Miki, K. & Clapham, D.E. 2013 Rheotaxis guides mammalian sperm. Curr. Biol. 23 (6), 443452.10.1016/j.cub.2013.02.007CrossRefGoogle ScholarPubMed
Mozaffari, A., Sharifi-Mood, N., Koplik, J. & Maldarelli, C. 2016 Self-diffusiophoretic colloidal propulsion near a solid boundary. Phys. Fluids 28 (5), 053107.10.1063/1.4948398CrossRefGoogle Scholar
Navier, C. 1823 Mémoire sur les lois du mouvement des fluides. Mem. Acad. Sci. Inst. Fr. 6 (1823), 389416.Google Scholar
Nizkaya, T.V., Asmolov, E.S., Zhou, J., Schmid, F. & Vinogradova, O.I. 2015 Flows and mixing in channels with misaligned superhydrophobic walls. Phys. Rev. E 91 (3), 033020.10.1103/PhysRevE.91.033020CrossRefGoogle ScholarPubMed
Ohmura, T., Nishigami, Y., Taniguchi, A., Nonaka, S., Ishikawa, T. & Ichikawa, M. 2021 Near-wall rheotaxis of the ciliate tetrahymena induced by the kinesthetic sensing of cilia. Sci. Adv. 7 (43), eabi5878.10.1126/sciadv.abi5878CrossRefGoogle ScholarPubMed
O'Neill, M.E. 1964 A slow motion of viscous liquid caused by a slowly moving solid sphere. Mathematika 11 (1), 6774.10.1112/S0025579300003508CrossRefGoogle Scholar
Pak, O.S. & Lauga, E. 2014 Generalized squirming motion of a sphere. J. Engng Maths 88 (1), 128.10.1007/s10665-014-9690-9CrossRefGoogle Scholar
Palacci, J., Sacanna, S., Abramian, A., Barral, J., Hanson, K., Grosberg, A.Y., Pine, D.J. & Chaikin, P.M. 2015 Artificial rheotaxis. Sci. Adv. 1 (4), e1400214.10.1126/sciadv.1400214CrossRefGoogle ScholarPubMed
Park, B.-W., Zhuang, J., Yasa, O. & Sitti, M. 2017 Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano 11 (9), 89108923.10.1021/acsnano.7b03207CrossRefGoogle ScholarPubMed
Pedley, T.J. 2016 Spherical squirmers: models for swimming micro-organisms. IMA J. Appl. Maths 81 (3), 488521.10.1093/imamat/hxw030CrossRefGoogle Scholar
Pietrzyk, K., Nganguia, H., Datt, C., Zhu, L., Elfring, G.J. & Pak, O.S. 2019 Flow around a squirmer in a shear-thinning fluid. J. Non-Newtonian Fluid Mech. 268, 101110.10.1016/j.jnnfm.2019.04.005CrossRefGoogle Scholar
Pimponi, D., Chinappi, M., Gualtieri, P. & Casciola, C.M. 2014 Mobility tensor of a sphere moving on a superhydrophobic wall: application to particle separation. Microfluid Nanofluid 16 (3), 571585.10.1007/s10404-013-1243-4CrossRefGoogle Scholar
Pimponi, D., Chinappi, M., Gualtieri, P. & Casciola, C.M. 2016 Hydrodynamics of flagellated microswimmers near free-slip interfaces. J. Fluid Mech. 789, 514533.10.1017/jfm.2015.738CrossRefGoogle Scholar
Poddar, A. 2023 Thermotactic navigation of an artificial microswimmer near a plane wall. J. Fluid Mech. 956, A25.10.1017/jfm.2023.16CrossRefGoogle Scholar
Poddar, A., Bandopadhyay, A. & Chakraborty, S. 2019 Activated micromotor propulsion by enzyme catalysis in a biofluid medium. Appl. Phys. Lett. 114 (5), 053701.10.1063/1.5081751CrossRefGoogle Scholar
Poddar, A., Bandopadhyay, A. & Chakraborty, S. 2020 Near-wall hydrodynamic slip triggers swimming state transition of micro-organisms. J. Fluid Mech. 894, A11.10.1017/jfm.2020.243CrossRefGoogle Scholar
Poddar, A., Bandopadhyay, A. & Chakraborty, S. 2021 Steering a thermally activated micromotor with a nearby isothermal wall. J. Fluid Mech. 915, A22.10.1017/jfm.2021.27CrossRefGoogle Scholar
Poddar, A., Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2018 Sedimentation of a surfactant-laden drop under the influence of an electric field. J. Fluid Mech. 849, 277311.10.1017/jfm.2018.415CrossRefGoogle Scholar
Roberts, A. 1970 Motion of spermatozoa in fluid streams. Nature 228 (5269), 375376.10.1038/228375a0CrossRefGoogle ScholarPubMed
Rothschild, 1963 Non-random distribution of bull spermatozoa in a drop of sperm suspension. Nature 198 (488), 1221.10.1038/1981221a0CrossRefGoogle Scholar
Rusconi, R., Guasto, J.S. & Stocker, R. 2014 Bacterial transport suppressed by fluid shear. Nat. Phys. 10 (3), 212.10.1038/nphys2883CrossRefGoogle Scholar
Sega, M., Sbragaglia, M., Biferale, L. & Succi, S. 2013 Regularization of the slip length divergence in water nanoflows by inhomogeneities at the angstrom scale. Soft Matt. 9 (35), 85268531.10.1039/c3sm51508gCrossRefGoogle Scholar
Shaik, V.A. & Ardekani, A.M. 2017 Motion of a model swimmer near a weakly deforming interface. J. Fluid Mech. 824, 4273.10.1017/jfm.2017.285CrossRefGoogle Scholar
Sharan, P., Xiao, Z., Mancuso, V., Uspal, W.E. & Simmchen, J. 2022 Upstream rheotaxis of catalytic Janus spheres. ACS Nano 16 (3), 45994608.10.1021/acsnano.1c11204CrossRefGoogle ScholarPubMed
Shen, Z., Würger, A. & Lintuvuori, J.S. 2018 Hydrodynamic interaction of a self-propelling particle with a wall. Eur. Phys. J. E 41 (3), 39.10.1140/epje/i2018-11649-0CrossRefGoogle ScholarPubMed
Shum, H., Gaffney, E. & Smith, D. 2010 Modelling bacterial behaviour close to a no-slip plane boundary: the influence of bacterial geometry. Proc. R. Soc. Lond. A 466 (2118), 17251748.Google Scholar
Spagnolie, S.E. & Lauga, E. 2012 Hydrodynamics of self-propulsion near a boundary: predictions and accuracy of far-field approximations. J. Fluid Mech. 700, 105147.10.1017/jfm.2012.101CrossRefGoogle Scholar
Swan, J.W. & Khair, A.S. 2008 On the hydrodynamics of ‘slip–stick’ spheres. J. Fluid Mech. 606, 115132.10.1017/S0022112008001614CrossRefGoogle Scholar
Tailleur, J. & Cates, M. 2009 Sedimentation, trapping, and rectification of dilute bacteria. Europhys. Lett.) 86 (6), 60002.10.1209/0295-5075/86/60002CrossRefGoogle Scholar
Tretheway, D.C. & Meinhart, C.D. 2002 Apparent fluid slip at hydrophobic microchannel walls. Phys. Fluids 14 (3), L9L12.10.1063/1.1432696CrossRefGoogle Scholar
Tretheway, D.C. & Meinhart, C.D. 2004 A generating mechanism for apparent fluid slip in hydrophobic microchannels. Phys. Fluids 16 (5), 15091515.10.1063/1.1669400CrossRefGoogle Scholar
Uspal, W.E., Popescu, M.N., Dietrich, S. & Tasinkevych, M. 2015 Rheotaxis of spherical active particles near a planar wall. Soft Matt. 11, 66136632.10.1039/C5SM01088HCrossRefGoogle Scholar
Walker, B.J., Ishimoto, K., Wheeler, R.J. & Gaffney, E.A. 2018 Response of monoflagellate pullers to a shearing flow: a simulation study of microswimmer guidance. Phys. Rev. E 98 (6), 063111.10.1103/PhysRevE.98.063111CrossRefGoogle Scholar
Walker, B.J., Wheeler, R.J., Ishimoto, K. & Gaffney, E.A. 2019 Boundary behaviours of Leishmania mexicana: a hydrodynamic simulation study. J. Theor. Biol. 462, 311320.10.1016/j.jtbi.2018.11.016CrossRefGoogle ScholarPubMed
Wang, J. & Gao, W. 2012 Nano/microscale motors: biomedical opportunities and challenges. ACS Nano 6 (7), 57455751.10.1021/nn3028997CrossRefGoogle ScholarPubMed
Willmott, G. 2008 Dynamics of a sphere with inhomogeneous slip boundary conditions in stokes flow. Phys. Rev. E 77 (5), 055302.10.1103/PhysRevE.77.055302CrossRefGoogle ScholarPubMed
Yazdi, S., Ardekani, A.M. & Borhan, A. 2015 Swimming dynamics near a wall in a weakly elastic fluid. J. Nonlinear Sci. 25 (5), 11531167.10.1007/s00332-015-9253-xCrossRefGoogle Scholar
Yazdi, S. & Borhan, A. 2017 Effect of a planar interface on time-averaged locomotion of a spherical squirmer in a viscoelastic fluid. Phys. Fluids 29 (9), 093104.10.1063/1.5002574CrossRefGoogle Scholar
Ybert, C., Barentin, C., Cottin-Bizonne, C., Joseph, P. & Bocquet, L. 2007 Achieving large slip with superhydrophobic surfaces: scaling laws for generic geometries. Phys. Fluids 19 (12), 123601.10.1063/1.2815730CrossRefGoogle Scholar
Yuan, M., Gong, M., Huang, H., Zhao, Y., Ying, Y. & Wang, S. 2022 Bubble-propelled plasmon-reinforced ${\rm Pt}\text {-}{\rm ZnIn}_{2}{\rm S}_{4}$ micromotors for stirring-free photocatalytic water purification. Inorg. Chem. Front. 9 (22), 57255734.10.1039/D2QI01291JCrossRefGoogle Scholar
Zhu, Y. & Granick, S. 2001 Rate-dependent slip of Newtonian liquid at smooth surfaces. Phys. Rev. Lett. 87 (9), 096105.10.1103/PhysRevLett.87.096105CrossRefGoogle ScholarPubMed