Skip to main content Accessibility help

Simulations of natural transition in viscoelastic channel flow

  • Sang Jin Lee (a1) (a2) and Tamer A. Zaki (a2)


Orderly, or natural, transition to turbulence in dilute polymeric channel flow is studied using direct numerical simulations of a FENE-P fluid. Three Weissenberg numbers are simulated and contrasted to a reference Newtonian configuration. The computations start from infinitesimally small Tollmien–Schlichting (TS) waves and track the development of the instability from the early linear stages through nonlinear amplification, secondary instability and full breakdown to turbulence. At the lowest elasticity, the primary TS wave is more unstable than the Newtonian counterpart, and its secondary instability involves the generation of $\unicode[STIX]{x1D6EC}$ -structures which are narrower in the span. These subsequently lead to the formation of hairpin packets and ultimately breakdown to turbulence. Despite the destabilizing influence of weak elasticity, and the resulting early transition to turbulence, the final state is a drag-reduced turbulent flow. At the intermediate elasticity, the growth rate of the primary TS wave matches the Newtonian value. However, unlike the Newtonian instability mode which reaches a saturated equilibrium condition, the instability in the polymeric flow reaches a periodic state where its energy undergoes cyclical amplification and decay. The spanwise size of the secondary instability in this case is commensurate with the Newtonian $\unicode[STIX]{x1D6EC}$ -structures, and the extent of drag reduction in the final turbulent state is enhanced relative to the lower elasticity condition. At the highest elasticity, the exponential growth rate of the TS wave is weaker than the Newtonian flow and, as a result, the early linear stage is prolonged. In addition, the magnitude of the saturated TS wave is appreciably lower than the other conditions. The secondary instability is also much wider in the span, with weaker ejection and without hairpin packets. Instead, streamwise-elongated streaks are formed and break down to turbulence via secondary instability. The final state is a high-drag-reduction flow, which approaches the Virk asymptote.


Corresponding author

Email address for correspondence:


Hide All
Agarwal, A., Brandt, L. & Zaki, T. A. 2014 Linear and nonlinear evolution of a localised disturbance in polymeric channel flow. J. Fluid Mech. 760, 278303.
Agarwal, A., Brandt, L. & Zaki, T. A. 2015 Transition to turbulence in viscoelastic channel flow. In IUTAM ABCM Symposium on Laminar Turbulent Transition, Proc. IUTAM 14 , pp. 519526.
Atalik, K. & Keunings, R. 2002 Non-linear temporal stability analysis of viscoelastic plane channel flows using a fully-spectral method. J. Non-Newtonian Fluid Mech. 102, 299319.
Chilcott, N. D. & Rallison, J. M. 1988 Creeping flow of dilute polymer solution past cylinders and spheres. J. Non-Newtonian Fluid Mech. 29, 381432.
Cruz, D. O. A., Pinho, F. T. & Oliveira, P. J. 2005 Analytical solutions for fully developed laminar flow of some viscoelastic liquids with a Newtonian solvent contribution. J. Non-Newtonian Fluid Mech. 132, 2835.
Dimitropoulos, C. D., Dubief, Y., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2005 Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow. Phys. Fluids 17, 011705.
Dimitropoulos, C. D., Sureshkumar, R. & Beris, A. N. 1998 Direct numerical simulation of viscoelastic turbulent channel flow exhibiting drag reduction: effect of the variation of rheological parameters. J. Non-Newtonian Fluid Mech. 79, 433468.
Dubief, Y., Terrapon, V. E. & Soria, J. 2013 On the mechanism of elasto-inertial turbulence. Phys. Fluids 25, 110817.
Dubief, Y., Terrapon, V. E., White, C. M., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2005 New answers on the interaction between polymers and vortices in turbulent flows. Flow Turbul. Combust. 74, 311329.
Dubief, Y., White, C. M., Terrapon, V. E., Shaqfeh, E. S. G., Moin, P. & Lele, S. K. 2004 On the coherent drag-reducing and turbulence-enhancing behaviour of polymers in wall flows. J. Fluid Mech. 514, 271280.
Fattal, R. & Kupferman, R. 2005 Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J. Non-Newtonian Fluid Mech. 126, 2337.
Hack, M. J. P. & Zaki, T. A. 2014 Streak instabilities in boundary layers beneath free-stream turbulence. J. Fluid Mech. 741, 280315.
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.
Ho, T. C. & Denn, M. M. 1977 Stability of plane Poiseuille flow of a highly elastic liquid. J. Non-Newtonian Fluid Mech. 3, 179195.
Hoda, N., Jovanovic, M. R. & Kumar, S. 2008 Energy amplification in channel flows of viscoelastic fluids. J. Fluid Mech. 601, 407424.
Hoda, N., Jovanović, M. R. & Kumar, S. 2009 Frequency responses of streamwise-constant perturbations in channel flows of Oldroyd-B fluids. J. Fluid Mech. 625, 411434.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Kim, K., Adrian, R. J., Balachandar, S. & Sureshkumar, R. 2008 Dynamics of hairpin vortices and polymer-induced turbulent drag reduction. Phys. Rev. Lett. 100, 134504.
Kim, K., Li, C.-F., Sureshkumar, R., Balachandar, S. & Adrian, R. J. 2007 Effects of polymer stresses on eddy structures in drag-reduced turbulent channel flow. J. Fluid Mech. 584, 281299.
Kim, K. & Sureshkumar, R. 2013 Spatiotemporal evolution of hairpin eddies, Reynolds stress, and polymer torque in polymer drag-reduced turbulent channel flows. Phys. Rev. E 87, 063002.
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1962 The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12, 142.
Kleiser, L. & Zang, T. A. 1991 Numerical simulation of transition in wall-bounded shear flows. Annu. Rev. Fluid Mech. 23, 495537.
Landau, L. D. 1944 On the problem of turbulence. Dokl. Akad. Nauk SSSR 44, 311314.
Larson, R. G. 1992 Instabilities in viscoelastic flows. Rheol. Acta 31, 213263.
Li, C.-F., Sureshkumar, R. & Khomami, B. 2006 Influence of rheological parameters on polymer induced turbulent drag reduction. J. Non-Newtonian Fluid Mech. 140, 2340.
Min, T., Yoo, J. Y. & Choi, H. 2001 Effect of spatial discretization schemes on numerical solutions of viscoelastic fluid flows. J. Non-Newtonian Fluid Mech. 100, 2747.
Min, T., Yoo, J. Y., Choi, H. & Joseph, D. D. 2003 Drag reduction by polymer additives in a turbulent channel flow. J. Fluid Mech. 486, 213238.
Nishioka, M., Iida, S. & Ichikawa, Y. 1975 An experimental investigation of the stability of plane Poiseuille flow. J. Fluid Mech. 72, 731751.
Orszag, S. A. & Patera, A. T. 1983 Secondary instability of wall-bounded shear flows. J. Fluid Mech. 128, 347385.
Page, J. & Zaki, T. A. 2014 Streak evolution in viscoelastic Couette flow. J. Fluid Mech. 742, 520551.
Page, J. & Zaki, T. A. 2015 The dynamics of spanwise vorticity perturbations in homogeneous viscoelastic shear flow. J. Fluid Mech. 777, 327363.
Porteous, K. C. & Denn, M. M. 1972 Linear stability of plane Poiseuille flow of viscoelastic liquids. Trans. Soc. Rheol. 16 (2), 295308.
Rosenfeld, M., Kwak, D. & Vinokur, M. 1991 A fractional step solution method for the unsteady incompressible Navier–Stokes equations in generalized coordinate systems. J. Comput. Phys. 94, 102137.
Sadanandan, B. & Sureshkumar, R. 2002 Viscoelastic effects on the stability of wall-bounded shear flows. Phys. Fluids 14 (1), 4148.
Samanta, D. S., Dubief, Y., Holzner, H., Schäfer, C., Morozov, A. N., Wagner, C. & Hof, B. 2013 Elasto-inertial turbulence. Proc. Natl Acad. Sci. USA 110, 1055710562.
Sandham, N. D. & Kleiser, L. 1992 The late stages of transition to turbulence in channel flow. J. Fluid Mech. 245, 319348.
Sayadi, T., Hamman, C. W. & Moin, P. 2013 Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. J. Fluid Mech. 724, 480509.
Schlichting, H.1933 Zur Entstehung der Turbulenz bei der Plattenströmung. Nach. Ges. Wiss. Gottingen, Math.-Phys. Klasse. 181–208.
Schubauer, G. B. & Skramstad, H. K. 1947 Laminar boundary layer oscillations and stability of laminar flow. J. Aero. Sci. 14 (2), 6978.
Shu, C.-W. 2009 High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51 (1), 82126.
Stuart, J. T. 1958 On the non-linear mechanics of hydrodynamic stability. J. Fluid Mech. 4, 121.
Terrapon, V. E., Dubief, Y. & Soria, J. 2014 On the role of pressure in elasto-inertial turbulence. J. Turbul. 16 (1), 2643.
Tollmien, W.1929 Über die Entstehung der Turbulenz. 1. Mitteilung. Nachr. Ges. Wiss. Gottingen, Math.-Phys. Klasse. 21–44. (Translation in Tollmien, W. 1931 NACA Tech. Rep. TM-609).
Vaithianathan, T. & Collins, L. R. 2003 Numerical approach to simulating turbulent flow of a viscoelastic polymer solution. J. Comput. Phys. 187, 121.
Vaithianathan, T., Robert, A., Brasseur, J. G. & Collins, L. R. 2006 An improved algorithm for simulating three-dimensional, viscoelastic turbulence. J. Non-Newtonian Fluid Mech. 140, 322.
Vaughan, N. J. & Zaki, T. A. 2011 Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks. J. Fluid Mech. 681, 116153.
Virk, P. S. & Mickley, H. S. 1970 The ultimate asymptote and mean flow structures in Tom’s phenomenon. Trans. ASME E: J. Appl. Mech. 37, 488493.
Warholic, M. D., Massah, H. & Hanratty, T. J. 1999 Influence of drag-reducing polymers on turbulence: effects of Reynolds number, concentration and mixing. Exp. Fluids 27, 461471.
White, F. M. 2006 Viscous Fluid Flow, 3rd edn. McGraw-Hill.
Zaki, T. A. 2013 From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition. Flow Turbul. Combust. 91, 451473.
Zhang, M., Lashgari, I., Zaki, T. A. & Brandt, L. 2013 Linear stability analysis of channel flow of viscoelastic Oldroyd-B and FENE-P fluids. J. Fluid Mech. 737, 249279.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed