Skip to main content Accessibility help

The sedimentation of flexible filaments

  • Lei Li (a1), Harishankar Manikantan (a2), David Saintillan (a2) and Saverio E. Spagnolie (a1)


The dynamics of a flexible filament sedimenting in a viscous fluid are explored analytically and numerically. Compared with the well-studied case of sedimenting rigid rods, the introduction of filament compliance is shown to cause a significant alteration in the long-time sedimentation orientation and filament geometry. A model is developed by balancing viscous, elastic and gravitational forces in a slender-body theory for zero-Reynolds-number flows, and the filament dynamics are characterized by a dimensionless elasto-gravitation number. Filaments of both non-uniform and uniform cross-sectional thickness are considered. In the weakly flexible regime, a multiple-scale asymptotic expansion is used to obtain expressions for filament translations, rotations and shapes. These are shown to match excellently with full numerical simulations. Furthermore, we show that trajectories of sedimenting flexible filaments, unlike their rigid counterparts, are restricted to a cloud whose envelope is determined by the elasto-gravitation number. In the highly flexible regime we show that a filament sedimenting along its long axis is susceptible to a buckling instability. A linear stability analysis provides a dispersion relation, illustrating clearly the competing effects of the compressive stress and the restoring elastic force in the buckling process. The instability travels as a wave along the filament opposite the direction of gravity as it grows and the predicted growth rates are shown to compare favourably with numerical simulations. The linear eigenmodes of the governing equation are also studied, which agree well with the finite-amplitude buckled shapes arising in simulations.


Corresponding author

Email address for correspondence:


Hide All
Autrusson, N., Guglielmini, L., Lecuyer, S., Rusconi, R. & Stone, H. A. 2011 The shape of an elastic filament in a two-dimensional corner flow. Phys. Fluids 23, 063602.
Batchelor, G. 1970 Slender body theory for particles of arbitrary cross-section in Stokes flow. J. Fluid Mech. 44, 419440.
Becker, L. E. & Shelley, M. J. 2001 Instability of elastic filaments in shear flow yields first-normal-stress differences. Phys. Rev. Lett. 87, 198301.
Bender, C. M. & Orszag, S. A. 1999 Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory, vol. 1. Springer.
Bird, R. B., Armstrong, R. C. & Hassager, O. 1987 Dynamics of Polymeric Liquids. I. Fluid Mechanics. Wiley Interscience.
Brennen, C. & Winet, H. 1977 Fluid mechanics of propulsion by cilia and flagella. Annu. Rev. Fluid Mech. 9, 339398.
Cosentino Lagomarsino, M., Pagonabarraga, I. & Lowe, C. P. 2005 Hydrodynamic induced deformation and orientation of a microscopic elastic filament. Phys. Rev. Lett. 94, 148104.
Cox, R. G. 1970 The motion of long slender bodies in a viscous fluid. Part 1. General theory. J. Fluid Mech. 44, 791810.
Ehrlich, H. P., Grislis, G. & Hunt, T. K. 1977 Evidence for the movement of the microtubules in wound contraction. Am. J. Surg. 133, 706709.
Evans, A. A., Spagnolie, S. E., Bartolo, D. & Lauga, E. 2013 Elastocapillary self-folding: buckling, wrinkling, and collapse of floating filaments. Soft Matt. 9, 17111720.
Fauci, L. J. & Dillon, R. 2006 Biofluidmechanics of reproduction. Annu. Rev. Fluid Mech. 38, 371394.
Fulford, G. R. & Blake, J. R. 1986 Mucociliary transport in the lung. J. Theor. Biol. 121, 381402.
Gaffney, E. A., Gadelha, H., Smith, D. J., Blake, J. R. & Kirkman-Brown, J. C. 2011 Mammalian sperm motility: observation and theory. Annu. Rev. Fluid Mech. 43, 501528.
Gardel, M. L., Nakamura, F., Hartwig, J. H., Crocker, J. C., Stossel, T. P. & Weitz, D. A. 1995 Prestressed f-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc. Natl Acad. Sci. USA 103, 17621767.
Götz, T. 2000 Interactions of fibres and flow: asymptotics, theory and numerics. PhD thesis, University of Kaiserslautern, Germany.
Groisman, A. & Steinberg, V. 2000 Elastic turbulence in a polymer solution flow. Nature 405, 5355.
Guglielmini, L., Kushwaha, A., Shaqfeh, E. & Stone, H. 2012 Buckling transitions of an elastic filament in a viscous stagnation point flow. Phys. Fluids 24, 123601.
Gustavsson, K. & Tornberg, A.-K. 2009 Gravity induced sedimentation of slender fibres. Phys. Fluids 21, 123301.
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice Hall.
Harasim, M., Wunderlich, B., Peleg, O., Kröger, M. & Bausch, A. R. 2013 Direct observation of the dynamics of semiflexible polymers in shear flow. Phys. Rev. Lett. 110, 108302.
Hinch, E. J. 1976 The distortion of a flexible inextensible thread in a shearing flow. J. Fluid Mech. 74, 317333.
Jayaraman, G., Ramachandran, S., Ghose, S., Laskar, A., Bhamla, M., Kumar, P. & Adhikari, R. 2012 Autonomous motility of active filaments due to spontaneous flow-symmetry breaking. Phys. Rev. Lett. 109, 158302.
Johnson, R. 1980 An improved slender-body theory for Stokes-flow. J. Fluid Mech. 99, 411431.
Jung, S., Spagnolie, S. E., Parikh, K., Shelley, M. & Tornberg, A.-K. 2006 Periodic sedimentation in a Stokesian fluid. Phys. Rev. E 74, 035302.
Kantsler, V. & Goldstein, R. E. 2012 Fluctuations, dynamics, and the stretch-coil transition of single actin filaments in extensional flows. Phys. Rev. Lett. 108, 038103.
Keller, J. B. & Rubinow, S. I. 1976 Slender-body theory for slow viscous flow. J. Fluid Mech. 75 (04), 705714.
Kim, S. & Karrila, S. 1991 Microhydrodynamics: Principles and Selected Applications. Dover.
Koch, D. L. & Shaqfeh, E. S. G. 1989 The instability of a dispersion of sedimenting spheroids. J. Fluid Mech. 209, 521542.
Lauga, E. 2007 Floppy swimming: Viscous locomotion of actuated elastica. Phys. Rev. E 75, 041916.
Lauga, E. & Powers, T. R. 2009 The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601.
Llopis, I., Pagonabarraga, I., Cosentino Lagomarsino, M. & Lowe, C. P. 2007 Sedimentation of pairs of hydrodynamically interacting semiflexible filaments. Phys. Rev. E 76, 061901.
Love, A. E. H. 1892 A Treatise on the Mathematical Theory of Elasticity. Cambridge University Press.
Manikantan, H. & Saintillan, D. 2013 Subdiffusive transport of fluctuating elastic filaments in cellular flows. Phys. Fluids 25 (7), 073603.
Metzger, B., Guazzelli, E. & Butler, J. E. 2005 Large-scale streamers in the sedimentation of a dilute fibre suspension. Phys. Rev. Lett. 95, 164506.
Munk, T., Hallatschek, O., Wiggins, C. H. & Frey, E. 2006 Dynamics of semiflexible polymers in a flow field. Phys. Rev. E 74, 041911.
Pan, L., Morozov, C., Wagner, C. & Arratia, P. 2013 Nonlinear elastic instability in channel flows at low Reynolds numbers. Phys. Rev. Lett. 110, 174502.
Reinsch, S. & Gönczy, P. 1998 Mechanisms of nuclear positioning. J. Cell Sci. 111, 22832295.
Saintillan, D., Shaqfeh, E. S. G. & Darve, E. 2006 The growth of concentration fluctuations in dilute dispersions of orientable and deformable particles under sedimentation. J. Fluid Mech. 553, 347388.
Schlagberger, X. & Netz, R. R. 2005 Orientation of elastic rods in homogeneous Stokes flow. Europhys. Lett. 70, 129135.
Seifert, U., Wintz, W. & Nelson, P. 1996 Straightening of thermal fluctuations in semiflexible polymers by applied tension. Phys. Rev. Lett. 77, 53895392.
Shaqfeh, E. S. G. 1996 Purely elastic instabilities in viscometric flows. Annu. Rev. Fluid Mech. 28, 129185.
Shinar, T., Mana, M., Piano, F. & Shelley, M. J. 2011 A model of cytoplasmically-driven microtubule-based motion in the single-celled C. elegans embryo. Proc. Natl Acad. Sci. USA 108, 1050810513.
Spagnolie, S. E. & Lauga, E. 2010 The optimal elastic flagellum. Phys. Fluids 22, 031901.
Steinhauser, D., Köster, S. & Pfohl, T. 2012 Mobility gradient induces cross-streamline migration of semiflexible polymers. ACS Macro Lett. 1, 541545.
Thomases, B., Shelley, M. J. & Thiffeault, J.-L. 2011 A Stokesian viscoelastic flow: transition to oscillations and mixing. Physica D 240, 16021614.
Tilney, L. G., Tilney, M. S. & DeRosier, D. J. 1992 Actin filaments, stereocilia, and hair cells: How cells count and measure. Annu. Rev. Cell Biol. 8, 257274.
Tornberg, A. K. & Shelley, M. J. 2004 Simulating the dynamics and interactions of flexible fibres in Stokes flows. J. Comput. Phys. 196, 840.
Tozzi, E. J., Scott, C. T., Vahey, D. & Klingenberg, D. J. 2011 Settling dynamics of asymmetric rigid fibres. Phys. Fluids 23, 033301.
Wandersman, E., Quennouz, N., Fermigier, M., Lindner, A. & du Roure, O. 2010 Buckled in translation. Soft Matt. 6, 57155719.
Wang, J., Tozzi, E. J., Graham, M. D. & Klingenberg, D. J. 2012 Flipping, scooping, and spinning: drift of rigid curved nonchiral fibres in simple shear flow. Phys. Fluids 24, 123304.
Wexler, J. S., Trinh, P. H., Berthet, H., Quennouz, N., du Roure, O., Huppert, H. E., Lindner, A. & Stone, H. A. 2013 Bending of elastic fibres in viscous flows: the influence of confinement. J. Fluid Mech. 720, 517544.
Wiggins, C. H. & Goldstein, R. E. 1998 Flexible and propulsive dynamics of elastic at low Reynolds number. Phys. Rev. Lett. 80, 38793882.
Xu, X. & Nadim, A. 1994 Deformation and orientation of an elastic slender body sedimenting in a viscous liquid. Phys. Fluids 6, 28892894.
Young, Y. N. 2009 Hydrodynamic interactions between two semiflexible inextensible filaments in Stokes flow. Phys. Rev. E 79, 046317.
Young, Y.-N. & Shelley, M. J. 2007 Stretch-coil transition and transport of fibres in cellular flows. Phys. Rev. Lett. 99, 058303.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title
Supplementary materials

Li et al. supplementary material
Supplementary movies captions

 PDF (87 KB)
87 KB

Li et al. supplementary movie
Trajectories of weakly flexible filaments

 Video (861 KB)
861 KB

Li et al. supplementary movie
Particle clouds

 Video (1.1 MB)
1.1 MB

Li et al. supplementary movie
Buckling of flexible filaments

 Video (3.0 MB)
3.0 MB

The sedimentation of flexible filaments

  • Lei Li (a1), Harishankar Manikantan (a2), David Saintillan (a2) and Saverio E. Spagnolie (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed