Skip to main content Accessibility help

Secondary flow in spanwise-periodic in-phase sinusoidal channels

  • A. Vidal (a1), H. M. Nagib (a1), P. Schlatter (a2) (a3) and R. Vinuesa (a2) (a3)


Direct numerical simulations (DNSs) are performed to analyse the secondary flow of Prandtl’s second kind in fully developed spanwise-periodic channels with in-plane sinusoidal walls. The secondary flow is characterized for different combinations of wave parameters defining the wall geometry at $Re_{h}=2500$ and 5000, where $h$ is the half-height of the channel. The total cross-flow rate in the channel $Q_{yz}$ is defined along with a theoretical model to predict its behaviour. Interaction between the secondary flows from opposite walls is observed if $\unicode[STIX]{x1D706}\simeq h\simeq A$ , where $A$ and $\unicode[STIX]{x1D706}$ are the amplitude and wavelength of the sinusoidal function defining the wall geometry. As the outer-scaled wavelength ( $\unicode[STIX]{x1D706}/h$ ) is reduced, the secondary vortices become smaller and faster, increasing the total cross-flow rate per wall. However, if the inner-scaled wavelength ( $\unicode[STIX]{x1D706}^{+}$ ) is below 130 viscous units, the cross-flow decays for smaller wavelengths. By analysing cases in which the wavelength of the wall is much smaller than the half-height of the channel $\unicode[STIX]{x1D706}\ll h$ , we show that the cross-flow distribution depends almost entirely on the separation between the scales of the instantaneous vortices, where the upper and lower bounds are determined by $\unicode[STIX]{x1D706}/h$ and $\unicode[STIX]{x1D706}^{+}$ , respectively. Therefore, the distribution of the secondary flow relative to the size of the wave at a given $Re_{h}$ can be replicated at higher $Re_{h}$ by decreasing $\unicode[STIX]{x1D706}/h$ and keeping $\unicode[STIX]{x1D706}^{+}$ constant. The mechanisms that contribute to the mean cross-flow are analysed in terms of the Reynolds stresses and using quadrant analysis to evaluate the probability density function of the bursting events. These events are further classified with respect to the sign of their instantaneous spanwise velocities. Sweeping events and ejections are preferentially located in the valleys and peaks of the wall, respectively. The sweeps direct the instantaneous cross-flow from the core of the channel towards the wall, turning in the wall-tangent direction towards the peaks. The ejections drive the instantaneous cross-flow from the near-wall region towards the core. This preferential behaviour is identified as one of the main contributors to the secondary flow.


Corresponding author

Email address for correspondence:


Hide All
Coceal, O. & Belcher, S. E. 2004 A canopy model of mean winds through urban areas. Q. J. R. Meteorol. Soc. 130, 13491372.
El Khoury, G. K., Schlatter, P., Noorani, A., Fischer, P. F., Brethouwer, G. & Johansson, A. V. 2013 Direct numerical simulation of turbulent pipe flow at moderately high Reynolds numbers. Flow Turbul. Combust. 91, 475495.
Farano, M., Cherubini, S., Robinet, J. C. & De Palma, P. 2017 Optimal bursts in turbulent channel flow. J. Fluid Mech. 817, 3560.
Finnigan, J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32, 519571.
Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 NEK5000: open source spectral element CFD solver. Available at:
García-Mayoral, R. & Jiménez, J. 2011 Drag reduction by riblets. Phil. Trans. R. Soc. Lond. A 369, 14121427.
Gavrilakis, S. 1992 Numerical simulation of low-Reynolds-number turbulent flow through a straight square duct. J. Fluid Mech. 244, 101129.
Gessner, F. B. 1973 The origin of secondary flow in turbulent flow along a corner. J. Fluid Mech. 58, 125.
Goldstein, D. B. & Tuan, T.-C. 1998 Secondary flow induced by riblets. J. Fluid Mech. 363, 115151.
Gupta, A. K., Laufer, J. & Kaplan, R. E. 1971 Spatial structure in the viscous sublayer. J. Fluid Mech. 50, 493512.
Hosseini, S. M., Vinuesa, R., Schlatter, P., Hanifi, A. & Henningson, D. S. 2016 Direct numerical simulation of the flow around a wing section at moderate Reynolds number. Intl J. Heat Fluid Flow 61, 117128.
Huser, A. & Biringen, S. 1993 Direct numerical simulation of turbulent flow in a square duct. J. Fluid Mech. 257, 6595.
Jelly, T. O., Jung, S. Y. & Zaki, T. A. 2014 Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture. Phys. Fluids 26, 095102.
Jiménez, J., del Álamo, J. C. & Flores, O. 2004 The large-scale dynamics of near-wall turbulence. J. Fluid Mech. 505, 179199.
Jiménez, J. P. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.
Kim, J. 1985 Turbulence structures associated with the bursting event. Phys. Fluids 28, 5258.
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741773.
Lee, M. & Moser, R. D. 2015 Direct numerical simulation of turbulent channel flow up to Re 𝜏 ≃ 5200. J. Fluid Mech. 774, 395415.
Lozano-Durán, A. & Jiménez, J. 2014 Effect of the computational domain on direct simulations of turbulent channels up to Re 𝜏 = 4200. Phys. Fluids 26, 011702.
Lu, S. S. & Willmarth, W. W. 1973 Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J. Fluid Mech. 60, 481511.
Maday, Y. & Patera, A. T. 1989 Spectral element methods for the Navier–Stokes equations. In State of the Art Surveys in Computational Mechanics (ed. Noor, A. K.), pp. 71143. ASME.
Marin, O., Vinuesa, R., Obabko, A. V. & Schlatter, P. 2016 Characterization of the secondary flow in hexagonal ducts. Phys. Fluids 28, 125101.
Moinuddin, K. A. M., Joubert, P. N. & Chong, M. S. 2004 Experimental investigation of turbulence-driven secondary motion over a streamwise external corner. J. Fluid Mech. 511, 123.
Nikitin, N. & Yakhot, A. 2005 Direct numerical simulation of turbulent flow in elliptical ducts. J. Fluid Mech. 532, 141164.
Panton, R. L. 1996 Incompressible Flow, 2nd edn, pp. 213216. Wiley-Interscience.
Patera, A. T. 1984 A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468488.
Perkins, H. J. 1970 The formation of streamwise vorticity in turbulent flow. J. Fluid Mech. 44, 721740.
Pinelli, A., Uhlmann, M., Sekimoto, A. & Kawahara, G. 2010 Reynolds number dependence of mean flow structure in square duct turbulence. J. Fluid Mech. 644, 107122.
Pope, S. B. 2000 Turbulent Flows, p. 2020. Cambridge University Press.
Prandtl, L. 1926 Über die ausgebildete Turbulenz. In Verh. 2nd Intl Kong. NACA Tech. Memo 62, 2nd Intl Kong. für Tech. Mech., Zürich, p. 435.
Schlatter, P. & Örlü, R. 2012 Turbulent boundary layers at moderate Reynolds numbers. Inflow length and tripping effects. J. Fluid Mech. 710, 534.
Spalart, P. R. 2000 Strategies for turbulence modelling and simulations. Intl J. Heat Fluid Flow 21, 252263.
Uhlmann, M., Pinelli, A., Kawahara, G. & Sekimoto, A. 2007 Marginally turbulent flow in a square duct. J. Fluid Mech. 588, 153162.
Vidal, A., Vinuesa, R., Schlatter, P. & Nagib, H. M. 2017 Influence of corner geometry on the secondary flow in turbulent square ducts. Intl J. Heat Fluid Flow 67, 6978.
Vidal, A., Vinuesa, R., Schlatter, P. & Nagib, H. M. 2018 Turbulent rectangular ducts with minimum secondary flow. Intl J. Heat Fluid Flow 72, 317328.
Vinuesa, R., Noorani, A., Lozano-Durán, A., El Khoury, G. K., Schlatter, P., Fischer, P. F. & Nagib, H. M. 2014 Aspect ratio effects in turbulent duct flows studied through direct numerical simulation. J. Turbul. 15, 677706.
Vinuesa, R., Prus, C., Schlatter, P. & Nagib, H. M. 2016 Convergence of numerical simulations of turbulent wall-bounded flows and mean cross-flow structure of rectangular ducts. Meccanica 51, 30253042.
Vinuesa, R., Schlatter, P. & Nagib, H. M. 2015 On minimum aspect ratio for duct flow facilities and the role of side walls in generating secondary flows. J. Turbul. 16, 588606.
Vinuesa, R., Schlatter, P. & Nagib, H. M. 2018 Secondary flow in turbulent ducts with increasing aspect ratio. Phys. Rev. Fluids 3, 054606.
Voronova, T. V. & Nikitin, N. 2006 Direct numerical simulation of the turbulent flow in an elliptical pipe. Comput. Math. Math. Phys. 46, 13781386.
Weatheritt, A. & Sandberg, R. 2016 A novel evolutionary algorithm to algebraic modications of the RANS stress–strain relationship. J. Comput. Phys. 325, 2237.
Zhang, H., Trias, F. X., Gorobets, A., Tan, Y. & Oliva, A. 2015 Direct numerical simulation of a fully developed turbulent square duct flow up to Re 𝜏 = 1200. Intl J. Heat Fluid Flow 54, 258267.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Secondary flow in spanwise-periodic in-phase sinusoidal channels

  • A. Vidal (a1), H. M. Nagib (a1), P. Schlatter (a2) (a3) and R. Vinuesa (a2) (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.