Skip to main content Accessibility help
×
Home

Roughness-induced transition by quasi-resonance of a varicose global mode

  • M. A. Bucci (a1), D. K. Puckert (a2), C. Andriano (a1), J.-Ch. Loiseau (a1), S. Cherubini (a3), J.-Ch. Robinet (a1) and U. Rist (a2)...

Abstract

The onset of unsteadiness in a boundary-layer flow past a cylindrical roughness element is investigated for three flow configurations at subcritical Reynolds numbers, both experimentally and numerically. On the one hand, a quasi-periodic shedding of hairpin vortices is observed for all configurations in the experiment. On the other hand, global stability analyses have revealed the existence of a varicose isolated mode, as well as of a sinuous one, both being linearly stable. Nonetheless, the isolated stable varicose modes are highly sensitive, as ascertained by pseudospectrum analysis. To investigate how these modes might influence the dynamics of the flow, an optimal forcing analysis is performed. The optimal response consists of a varicose perturbation closely related to the least stable varicose isolated eigenmode and induces dynamics similar to that observed experimentally. The quasi-resonance of such a global mode to external forcing might thus be responsible for the onset of unsteadiness at subcritical Reynolds numbers, hence providing a simple explanation for the experimental observations.

Copyright

Corresponding author

Email address for correspondence: bucci.malessandro@gmail.com

References

Hide All
Acarlar, M. S. & Smith, C. R. 1987 A study of hairpin vortices in a laminar boundary layer. Part 1. Hairpin vortices generated by a hemisphere protuberance. J. Fluid Mech. 175, 141.
Åkervik, E., Brandt, L., Henningson, D. S., Hoepffner, J., Marxen, O. & Schlatter, P. 2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18, 068102.
Arnal, D., Houdeville, R., Séraudie, A. & Vermeersch, O. 2011 Overview of laminar-turbulent transition investigations at ONERA toulouse. In 41st AIAA Fluid Fynamics Conference.
Bagheri, S., Schlatter, P., Schmid, P. J. & Henningson, D. S. 2009 Global stability of a jet in crossflow. J. Fluid Mech. 624, 3344.
Baker, C. J. 1978 The laminar horseshoe vortex. J. Fluid Mech. 95, 347367.
Bernardini, M., Pirozzoli, S. & Orlandi, P. 2012 Compressibility effects on roughness-induced boundary layer transition. Intl J. Heat Fluid Flow 35, 4551.
Braslow, A. L.1960 Review of the effect of distributed surface roughness on boundary-layer transition. Tech. Rep. Advisory Group for Aeronautical Research and Development, Paris (France).
Cherubini, S., De Tullio, M. D., De Palma, P. & Pascazio, G. 2013 Transient growth in the flow past a three-dimensional smooth roughness element. J. Fluid Mech. 724, 642670.
Citro, V., Giannetti, F., Luchini, P. & Auteri, F. 2015 Global stability and sensitivity analysis of boundary-layer flows past a hemispherical roughness element. Phys. Fluids 27 (8), 084110.
Cossu, C. & Brandt, L. 2004 On tollmien-schlichting-like waves in streaky boundary layers. Eur. J. Mech. (B/Fluids) 23, 815833.
Denissen, N. A. & White, E. B. 2008 Roughness-induced bypass transition revisited. AIAA J. 46 (7), 18741877.
Denissen, N. A. & White, E. B. 2009 Continuous spectrum analysis of roughness-induced transient growth. Phys. Fluids 21, 114105.
Deville, M. O., Fischer, P. F. & Mund, E. H. 2002 High-Order Methods for Incompressible Fluid Flow. Cambridge University Press.
von Doenhoff, A. E. & Baslow, A. L. 1961 Boundary Layer and Flow Control, its Principles and Application – The Effect of Distributed Surface Roughness on Laminar Flows, pp. 657681. Pergamon.
Edwards, W. S., Tuckerman, L. S., Friesner, R. A. & Sorensen, D. C. 1994 Krylov methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 110 (1), 82102.
Ergin, F. G. & White, E. B. 2006 Unsteady and transitional flows behind roughness elements. AIAA J. 44 (11), 25042514.
Fischer, P. & Choudhari, M. 2004 Numerical simulation of roughness induced transient growth in a laminar boundary layer. In 34th AIAA Fluid Dynamics Conference.
Fischer, P. F., Kruse, J., Mullen, J., Tufo, H., Lottes, J. W. & Kerkemeier, S. G.2008 Nek5000–open source spectral element CFD solver. Argonne National Laboratory, Mathematics and Computer Science Division, Argonne, IL. http://nek5000.mcs.anl.gov/index.php/MainPage.
Fransson, J. H. M., Brandt, L., Talamelli, A. & Cossu, C. 2004 Experimental and theoretical investigation of the nonmodal growth of steady streaks in a flat plate boundary layer. Phys. Fluids 16 (10), 36273638.
Gregory, N. & Walker, W. S.1955 The effect of transition of isolated surface excrescences in the boundary layer. Tech. Rep. R. & M 2779. Aeronautical Research Council, England.
van Ingen, J. L.1956 A suggested semi-empirical method for the calculation of the boundary layer transition region. Tech. Rep., VTH-74.
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.
Joslin, R. D. & Grosch, C. E. 1995 Growth characterisitcs downstream of a shallow bump: computation and experiments. Phys. Fluids 7, 30423047.
Klebanoff, P. S., Cleveland, W. G. & Tidstrom, K. D. 1992 On the evolution of a turbulent boundary layer induced by a three-dimensional roughness element. J. Fluid Mech. 237, 101187.
Klebanoff, P. S. & Tidstrom, K. D. 1972 Mechanism by which a two-dimensional roughness element induces boundary-layer transition. Phys. Fluids 15 (7), 11731188.
Kurz, H. B. E. & Kloker, M. J. 2016 Mechanisms of flow tripping by discrete roughness elements in a swept-wing boundary layer. J. Fluid Mech. 796, 158194.
Landahl, M. T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Maths 28, 735756.
Lechoucq, R. B. & Sorensen, D. C. 1996 Deflation techniques for an implicitely restarted Arnoldi iteration. SIAM J. Matrix Anal. Applics 17 (4), 789821.
Loiseau, J.-C., Robinet, J.-C., Cherubini, S. & Leriche, E. 2014 Investigation of the roughness-induced transition: global stability analyses and direct numerical simulations. J. Fluid Mech. 760, 175211.
Luchini, P. & Bottaro, A. 2014 Adjoint equations in stability analysis. Annu. Rev. Fluid Mech. 46, 493517.
Lundbladh, A., Berlin, S., Skote, M., Hildings, C., Choi, J., Kim, J. & Henningson, D. S.1999 An efficient spectral method for simulation of incompressible flow over a flat plate. Trita-mek. Tech. Rep. 11.
Monokrousos, A., Åkervik, E., Brandt, L. & Henningson, D. S. 2010 Global three-dimensional optimal disturbances in the blasius boundary-layer flow using time-steppers. J. Fluid Mech. 650, 181214.
Patera, A. T. 1984 A spectral element method for fluid dynamics: laminar flow in a channel expansion. J. Comput. Phys. 54, 468488.
Perraud, J., Arnal, D., Séraudie, A. & Tran, D. 2004 Laminar-turbulent transition on aerodynamics surfaces with imperfections. In Proceedings of RTO AVT-111 Symposium, Prague, Czech Republic.
Puckert, D. K., Dieterle, M. & Rist, U. 2017 Reduction of freestream turbulence at low velocities. Exp. Fluids 58 (5), 45.
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech.
Shahinfar, S., Fransson, J. H. M. & Talamelli, A. 2012 Revival of classical vortex generators now for transition delay. Phys. Rev. Lett. 109 (7), 074501.
Shin, Y., Rist, U. & Krämer, E. 2015 Stability of the laminar boundary-layer flow behind a roughness element. Exp. Fluids 56 (1), 11.
Smith, A. M. O. & Gamberoni, N.1956 Transition, pressure gradient and stability theory. Tech. Rep. ES-26388, Douglas Aircraft Company.
Sorensen, D. C. 1992 Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Applics 13, 357385.
Stewart, G. W. 2001 A Krylov–Schur algorithm for large eigenproblems. SIAM J. Matrix Anal. Applics 23, 601614.
Subasi, A., Puckert, D., Gunes, H. & Rist, U. 2015 Calibration of constant temperature anemometry with hot-film probes for low speed laminar water channel flows. In The 13th International Symposium on Fluid Control, Measurement and Visualization. Doha, Qatar. Flucome 2015.
Subbareddy, P. K., Bartkowicz, M. D. & Candler, G. V. 2014 Direct numerical simulation of high-speed transition due to an isolated roughness element. J. Fluid Mech. 748, 848878.
Tani, I., Komoda, H. & Komatsu, Y1962 Boundary-layer transition by isolated roughness. Tech. Rep. 375. Aeronautical Research Institute, University of Tokyo.
Toh, K.-C. & Trefethen, L. N. 1996 Calculation of pseudospectra by the Arnoldi iteration. SIAM J. Sci. Comput. 17 (1), 115.
Trefethen, L. & Embree, M. 2005 Spectra and Pseudospectra. Princeton University Press.
de Tullio, N., Paredes, P., Sandham, N. D. & Theofilis, V. 2013 Laminar-turbulent transition induced by discrete roughness element in a supersonic boundary layer. J. Fluid Mech. 735, 613646.
Tumin, A. & Reshotko, E. 2005 Receptivity of a boundary-layer flow to a three-dimensional hump at finite Reynolds numbers. Phys. Fluids 17, 094101.
Vermeersch, O.2009 Etude et modélisation du phénomène de croissance transition pour des couches limites incompressibles et compressibles. PhD thesis, ISAE, Toulouse.
Ye, Q., Schrijer, F. F. J. & Scarano, F. 2016 Boundary layer transition mechanisms behind a micro-ramp. J. Fluid Mech. 793, 132161.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Roughness-induced transition by quasi-resonance of a varicose global mode

  • M. A. Bucci (a1), D. K. Puckert (a2), C. Andriano (a1), J.-Ch. Loiseau (a1), S. Cherubini (a3), J.-Ch. Robinet (a1) and U. Rist (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed