Skip to main content Accessibility help
×
Home

On the contact-line pinning in cavity formation during solid–liquid impact

  • H. Ding (a1), B.-Q. Chen (a1), H.-R. Liu (a1), C.-Y. Zhang (a1), P. Gao (a1) and X.-Y. Lu (a1)...

Abstract

We investigate the cavity formation during the impact of spheres and cylinders into a liquid pool by using a combination of experiments, simulations and theoretical analysis, with particular interest in contact-line pinning and its relation with the subsequent cavity evolution. The flows are simulated by a Navier–Stokes diffuse-interface solver that allows for moving contact lines. On the basis of agreement on experimentally measured quantities such as the position of the pinned contact line and the interface shape, we investigate flow details that are not accessible experimentally, identify the interface regions in the cavity formation and examine the geometric effects of impact objects. We connect wettability, inertia, geometry of the impact object, interface bending and contact-line position with the contact-line pinning by analysing the force balance at a pinned meniscus, and the result compares favourably with those from simulations and experiments. In addition to adjusting the interface bending, the object geometry also has a significant effect on the magnitude of low pressure in the liquid and the occurrence of flow separation. As a result, it is easier for an object with sharp edges to generate a cavity than a smooth object. A theoretical model based on the Rayleigh–Besant equation is developed to provide a quantitative description of the radial expansion of the cavity after the pinning of the contact line. The accuracy of the solution is greatly affected by the geometrical information on the interface connected to the pinned meniscus, showing the dependence of the global cavity dynamics on the local flows around the pinned contact line. Vertical ripple propagation on the cavity wall is found to follow the dispersion relation for the perturbation evolution on a hollow jet.

Copyright

Corresponding author

Email address for correspondence: hding@ustc.edu.cn

References

Hide All
Aristoff, J. M. & Bush, J. W. M. 2009 Water entry of small hydrophobic spheres. J. Fluid Mech. 619, 4578.
Aristoff, J. M., Truscott, T. T., Techet, A. H. & Bush, J. W. M. 2010 The water entry of decelerating spheres. Phys. Fluids 22, 032102.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Bergmann, R., van der Meer, D., Gekle, S., van der Bos, A. & Lohse, D. 2009 Controlled impact of a disk on a water surface: cavity dynamics. J. Fluid Mech. 633, 381409.
Bergmann, R., van der Meer, D., Stijnman, M., Sandtke, M., Prosperetti, A. & Lohse, D. 2006 Giant bubble pinch-off. Phys. Rev. Lett. 96, 154505.
Bush, J. W. M. & Hu, D. L. 2006 Walking on water: biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339369.
Carlson, A., Do-Quang, M. & Amberg, G. 2009 Modeling of dynamic wetting far from equilibrium. Phys. Fluids 21, 121701.
Ding, H., Li, E. Q., Zhang, F. H., Sui, Y., Spelt, P. D. M. & Thoroddsen, S. T. 2012 Propagation of capillary waves and ejection of small droplets in rapid drop spreading. J. Fluid Mech. 697, 92114.
Ding, H. & Spelt, P. D. M. 2007 Wetting condition in diffuse interface simulations of contact line motion. Phys. Rev. E 75, 46708.
Ding, H., Spelt, P. D. M. & Shu, C. 2007 Diffuse interface model for incompressible two-phase flows with large density ratios. J. Comput. Phys. 226, 20782095.
Do-Quang, M. & Amberg, G. 2009 The splash of a solid sphere impacting on a liquid surface: numerical simulation of the influence of wetting. Phys. Fluids 21, 022102.
Duclaux, V., Caille, F., Duez, C., Ybert, C., Bocquet, L. & Clanet, C. 2007 Dynamics of transient cavities. J. Fluid Mech. 591, 119.
Duez, C., Ybert, C., Clanet, C. & Bocquet, L. 2007 Making a splash with water repellency. Nat. Phys. 3, 180183.
Ganan-Calvo, A. M. 2007 Absolute instability of a viscous hollow jet. Phys. Rev. E 75, 027301.
Gaudet, S. 1998 Numerical simulation of circular disks entering the free surface of a fluid. Phys. Fluids 10, 015104.
Gekle, S., van der Bos, A., Bergmann, R., van der Meer, D. & Lohse, D. 2008 Noncontinuous Froude number scaling for the closure depth of a cylindrical cavity. Phys. Rev. Lett. 100, 084502.
Gekle, S. & Gordillo, J. M. 2010 Generation and breakup of Worthington jets after cavity collapse. Part 1. Jet formation. J. Fluid Mech. 663, 293330.
Gekle, S., Gordillo, J. M., van der Meer, D. & Lohse, D. 2009 High-speed jet formation after solid object impact. Phys. Rev. Lett. 102, 034502.
Gekle, S., Peters, I. R., Gordillo, J. M., van der Meer, D. & Lohse, D. 2010 Supersonic air flow due to solid–liquid impact. Phys. Rev. Lett. 104, 024501.
Glasheen, J. W. & McMahon, T. A. 1996 A hydrodynamic model of locomotion in the basilisk lizard. Phys. Rev. Lett. 380, 340342.
Grumstrup, T., Keller, J. B. & Belmonte, A. 2007 Cavity ripples observed during the impact of solid objects into liquids. Phys. Rev. Lett. 99, 114502.
Jacqmin, D. 1999 Calculation of two-phase Navier–Stokes flows using phase-field modelling. J. Comput. Phys. 155, 96127.
Lee, D. G. & Kim, H. Y. 2008 Impact of a superhydrophobic sphere onto water. Langmuir 24, 142145.
Liu, H. R. & Ding, H. 2015 A diffuse-interface immersed-boundary method for two-dimensional simulation of flows with moving contact lines on curved substrates. J. Comput. Phys. 294, 484502.
Magaletti, F., Picano, F., Chinappi, M., Marino, L. & Casciola, C. M. 2013 The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids. J. Fluid Mech. 714, 95126.
Peters, I. R., van der Meer, D. & Gordillo, J. M. 2013 Splash wave and crown breakup after disc impact on a liquid surface. J. Fluid Mech. 724, 553580.
Sui, Y., Ding, H. & Spelt, P. D. M. 2014 Numerical simulations of flows with moving contact lines. Annu. Rev. Fluid Mech. 46, 97119.
Sui, Y. & Spelt, P. D. M. 2013 An efficient computational model for macroscale simulations of moving contact lines. J. Comput. Phys. 242, 3752.
Truscott, T. T., Epps, B. P. & Belden, J. 2014 Water entry of projectiles. Annu. Rev. Fluid Mech. 46, 355378.
Truscott, T. T., Epps, B. P. & Techet, A. H. 2012 Unsteady forces on spheres during free-surface water entry. J. Fluid Mech. 704, 173210.
Truscott, T. T. & Techet, A. H. 2009 A spin on cavity formation during water entry of hydrophobic and hydrophilic spheres. Phys. Fluids 21, 121703.
Vella, D. & Li, J. 2010 The impulsive motion of a small cylinder at an interface. Phys. Fluids 22, 052104.
Yan, H., Liu, Y., Kominiarczuk, J. & Yue, D. K. P. 2009 Cavity dynamics in water entry at low Froude numbers. J. Fluid Mech. 641, 441461.
Yue, P. & Feng, J. J. 2011 Wall energy relaxation in the Cahn–Hilliard model for moving contact lines. Phys. Fluids 23, 012106.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Ding et al. supplementary movie
Cavity formation during the impact of a cylinder into water pool. This is the same experimental case as in Fig.1.

 Video (301 KB)
301 KB
VIDEO
Movies

Ding et al. supplementary movie
Cavity formation during the impact of a cylinder into water pool. This is the same experimental case as in Fig.1.

 Video (481 KB)
481 KB
VIDEO
Movies

Ding et al. supplementary movie
Cavity formation during the impact of a sphere into water pool. This is the same experimental case as in Fig.1.

 Video (10.4 MB)
10.4 MB
VIDEO
Movies

Ding et al. supplementary movie
Cavity formation during the impact of a sphere into water pool. This is the same experimental case as in Fig.1.

 Video (1.1 MB)
1.1 MB
VIDEO
Movies

Ding et al. supplementary movie
Cavity formation during the impact of a cylinder into water pool. This is the same numerical case as in Fig.1.

 Video (24.6 MB)
24.6 MB
VIDEO
Movies

Ding et al. supplementary movie
Cavity formation during the impact of a cylinder into water pool. This is the same numerical case as in Fig.1.

 Video (1.9 MB)
1.9 MB
VIDEO
Movies

Ding et al. supplementary movie
Cavity formation during the impact of a sphere into water pool. This is the same numerical case as in Fig.1.

 Video (132 KB)
132 KB
VIDEO
Movies

Ding et al. supplementary movie
Cavity formation during the impact of a sphere into water pool. This is the same numerical case as in Fig.1.

 Video (251 KB)
251 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed