Skip to main content Accessibility help

On surfactant-enhanced spreading and superspreading of liquid drops on solid surfaces



The mechanisms driving the surfactant-enhanced spreading of droplets on the surface of solid substrates, and particularly those underlying the superspreading behaviour sometimes observed, are investigated theoretically. Lubrication theory for the droplet motion, together with advection–diffusion equations and chemical kinetic fluxes for the surfactant transport, leads to coupled evolution equations for the drop thickness, interfacial concentrations of surfactant monomers and bulk concentrations of monomers and micellar, or other, aggregates. The surfactant can be adsorbed on the substrate either directly from the bulk monomer concentrations or from the liquid–air interface through the contact line. An important feature of the spreading model developed here is the surfactant behaviour at the contact line; this is modelled using a constitutive relation, which is dependent on the local surfactant concentration. The evolution equations are solved numerically, using the finite-element method, and we present a thorough parametric analysis for cases of both insoluble and soluble surfactants with concentrations that can, in the latter case, exceed the critical micelle, or aggregate, concentration. The results show that basal adsorption of the surfactant plays a crucial role in the spreading process; the continuous removal of the surfactant that lies upon the liquid–air interface, due to the adsorption at the solid surface, is capable of inducing high Marangoni stresses, close to the droplet edge, driving very fast spreading. The droplet radius grows at a rate proportional to ta with a = 1 or even higher, which is close to the reported experimental values for superspreading. The spreading rates follow a non-monotonic variation with the initial surfactant concentration also in accordance with experimental observations. An accompanying feature is the formation of a rim at the leading edge of the droplet. In some cases, the drop spreads to form a ‘pancake’ or creates a ‘secondary’ front separated from the main droplet.


Corresponding author

Email address for correspondence:


Hide All
Beacham, D. R., Matar, O. K. & Craster, R. V. 2009 Surfactant-enhanced rapid spreading of drops on solid surfaces. Langmuir 25, 1417414181.
Benintendi, S. W. & Smith, M. K. 1999 The spreading of a non-isothermal liquid droplet. Phys. Fluids 11, 982989.
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.
Carlson, A., Do-Quang, M. & Amberg, G. 2009 Modelling of dynamic wetting far from equilibrium. Phys. Fluids 21, 121701121704.
Chan, K. Y. & Borhan, A. 2005 Surfactant-assisted spreading of a liquid drop on a smooth solid surface. J. Colloid Interface Sci. 287, 233248.
Clay, M. A. & Miksis, M. J. 2004 Effects of surfactant on droplet spreading. Phys. Fluids. 16, 30703078.
Cox, R. G. 1986 a The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.
Cox, R. G. 1986 b The dynamics of the spreading of liquids on a solid surface. Part 2. Surfactants. J. Fluid Mech. 168, 195220.
Craster, R. V. & Matar, O. K. 2006 On the dynamics of liquid lenses. J. Colloid Interface Sci. 303, 503516.
Craster, R. V. & Matar, O. K. 2007 On autophobing in surfactant-driven thin films. Langmuir 23, 25882601.
Dussan, V. & Davis, S. H. 1974 On the motion of a fluid–fluid interface along a solid surface. J. Fluid Mech. 65, 7195.
Dussan, V., Rame, E. & Garoff, S. 1991 On identifying the appropriate boundary conditions at a moving contact line: an experimental investigation. J. Fluid Mech. 230, 97116.
Edmonstone, B. D., Craster, R. V. & Matar, O. K. 2006 Surfactant-induced fingering phenomena beyond the critical micelle concentration. J. Fluid Mech. 564, 105138.
Edmonstone, B. D., Matar, O. K. & Craster, R. V. 2005 Surfactant-induced fingering phenomena in thin film flow down an inclined plane. Physica D 209, 6279.
Ehrhard, P. 1993 Experiments on isothermal and non-isothermal spreading. J. Fluid Mech. 257, 463483.
Ehrhard, P. & Davis, S. H. 1991 Non-isothermal spreading of liquid drops on horizontal plates. J. Fluid Mech. 229, 365388
Gaver, D. P. III & Grotberg, J. B. 1990 The dynamics of a localized surfactant on a thin film. J. Fluid Mech. 213, 127148.
de Gennes, P. G. 1985 Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827863.
Greenspan, H. P. 1978 On the motion of a small viscous droplet that wets a surface. J. Fluid Mech. 84 125143.
Grotberg, J. B. 1994 Pulmonary flow and transport phenomena. Annu. Rev. Fluid Mech. 26, 529571.
Haley, P. J. & Miksis, M. J. 1991 The effect of the contact line on droplet spreading. J. Fluid Mech. 223, 5781.
Hill, R. M. 1998 Superspreading. Curr. Opin. Colloid Interface Sci. 3, 247254.
Hill, R. M. 2002 Silicone surfactants-new developments. Curr. Opin. Colloid Interface Sci. 7, 255261.
Huh, C. & Scriven, L. E. 1971 Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35, 85101.
Hunter, R. J. 1991 Foundations of Colloid Science. Oxford University Press.
Jensen, O. E. & Grotberg, J. B. 1993 The spreading of heat or soluble surfactant along a thin film. Phys. Fluids A 5, 5868.
Jensen, O. E. & Naire, S. 2006 The spreading and stability of a surfactant-laden drop on a prewetted substrate. J. Fluid Mech. 554, 524.
Kataoka, D. E. & Troian, S. M. 1997 A theoretical study of instabilities at the advancing front of thermally driven coating films. J. Colloid Interface Sci. 192, 350362.
Kim, H.-Y., Qin, Y. & Fichthorn, K. A. 2006 Molecular dynamics simulation of nanodroplet spreading enhanced by linear surfactants. J. Chem. Phys. 125, 174708.
Knoche, M., Tamura, H. & Bukovac, J. 1991 Performance and stability of the organosilicone surfactant L-77: effect of pH, concentration, and temperature. J. Agric. Food Chem. 39, 202206.
Kondic, L. & Diez, J. 2001 Pattern formation in the flow of thin films down an incline: constant flux configuration. Phys. Fluids 13, 31683184.
Kumar, N., Couzis, A. & Maldarelli, C. 2003 Measurement of the kinetic rate constants for the adsorption of superspreading trisiloxanes to an air/aqueous interface and the relevance of these measurements to the mechanism of superspreading. J. Colloid Interface Sci. 267, 272285.
Navier, C. L. M. H. 1823 Mémoire sur les lois du mouvement des fluides. Acad. R. Sci. Inst. Fr. 6, 389440.
Nikolov, A. D., Wasan, D. T., Chengara, A., Koczo, K., Policello, G. A. & Kolossvary, I. 2002 Superspreading driven by Marangoni flow. Adv. Colloid Interface Sci. 96, 325338.
Radulovic, J., Sefiane, K. & Shanahan, M. E. R. 2009 Spreading and wetting behaviour of trisiloxanes. J. Bionic Engng 6, 341349.
Rafai, S., Sarker, D., Bergeron, V., Meunier, J. & Bonn, D. 2002 Superspreading: aqueous surfactant drops spreading on hydrophobic surfaces. Langmuir 18, 1048610488.
Rame, E. 2001 The spreading of surfactant-laden liquids with surfactant transfer through the contact line. J. Fluid Mech. 440, 205234.
Schwartz, L. W. & Eley, R. R. 1998 Simulation of droplet motion on low-energy and heterogeneous surfaces. J. Colloid Interface Sci. 202, 173188.
Sheludko, A. 1967 Thin liquid films. Adv. Colloid Interface Sci. 1, 391464.
Spaid, M. A. & Homsy, G. M. 1996 Stability of Newtonian and viscoelastic dynamic contact lines. Phys. Fluids 8, 460478.
Stoebe, T., Hill, R. M., Ward, M. D. & Davis, H. T. 1997 a Enhanced spreading of aqueous films containing ionic surfactants on solid substrates. Langmuir 13, 72767281.
Stoebe, T., Lin, Z., Hill, R. M., Ward, M. D. & Davis, H. T. 1996 Surfactant-enhanced spreading. Langmuir 12, 337344.
Stoebe, T., Lin, Z., Hill, R. M., Ward, M. D. & Davis, H. T. 1997 b Enhanced spreading of aqueous films containing ethoxylated alcohol surfactants on solid substrates. Langmuir 13, 72707275.
Stoebe, T., Lin, Z., Hill, R. M., Ward, M. D. & Davis, H. T. 1997 c Superspreading of aqueous films containing trisiloxane surfactant on solid substrates. Langmuir 13, 72827286.
Tanner, L. H. 1979 The spreading of silicone oil drops on horizontal surfaces. J. Phys. D 12, 14731484.
Warner, M. R. E., Craster, R. V. & Matar, O. K. 2004 a Fingering phenomena created by a soluble surfactant deposition on a thin liquid film. Phys. Fluids 16, 29332951.
Warner, M. R. E., Craster, R. V. & Matar, O. K. 2004 b Fingering phenomena associated with surfactant spreading on thin liquid films. J. Fluid Mech. 510, 169200.
Zhu, S. Miller, W. G., Scriven, L. E. & Davis, H. T. 1994 Superspreading of water–silicone surfactant on hydrophobic surfaces. Colloids Surf. A 90, 6378.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

On surfactant-enhanced spreading and superspreading of liquid drops on solid surfaces



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed