Skip to main content Accessibility help
×
Home

Micro-splashing by drop impacts

  • S. T. Thoroddsen (a1), K. Takehara (a2) and T. G. Etoh (a2)

Abstract

We use ultra-high-speed video imaging to observe directly the earliest onset of prompt splashing when a drop impacts onto a smooth solid surface. We capture the start of the ejecta sheet travelling along the solid substrate and show how it breaks up immediately upon emergence from the underneath the drop. The resulting micro-droplets are much smaller and faster than previously reported and may have gone unobserved owing to their very small size and rapid ejection velocities, which approach 100 m s−1, for typical impact conditions of large rain drops. We propose a phenomenological mechanism which predicts the velocity and size distribution of the resulting microdroplets. We also observe azimuthal undulations which may help promote the earliest breakup of the ejecta. This instability occurs in the cusp in the free surface where the drop surface meets the radially ejected liquid sheet.

Copyright

Corresponding author

Email address for correspondence: sigurdur.thoroddsen@kaust.edu.sa

References

Hide All
1. Cresswell, R. W. & Morton, B. R. 1995 Drop-formed vortex rings – the generation of vorticity. Phys. Fluids 7, 13631370.
2. Driscoll, M. M. & Nagel, S. R. 2011 Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107, 154502.
3. Driscoll, M. M., Stevens, C. S. & Nagel, S. R. 2010 Thin film formation during splashing of viscous liquids. Phys. Rev. E 83, 036302.
4. Eggers, J. 2001 Air entrainment through free-surface cusps. Phys. Rev. Lett. 86, 42904293.
5. Eggers, J., Fontelos, M. A., Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22, 062101.
6. Etoh, T. G., Poggemann, D., Kreider, G., Mutoh, H., Theuwissen, A. J. P., Ruckelshausen, A., Kondo, Y., Maruno, H., Takubo, K., Soya, H., Takehara, K., Okinaka, T. & Takano, Y. 2003 An image sensor which captures 100 consecutive frames at 1000000 frames/s. IEEE Trans. Electron Devices 50, 144151.
7. Haller, K. K., Ventikos, Y., Poulikakos, D. & Monkewitz, P. 2002 Computational study of high-speed liquid droplet impact. J. Appl. Phys. 92, 28212828.
8. Haller, K. K., Ventikos, Y. & Poulikakos, D. 2003 Wave structure in the contact line region during high speed droplet impact on a surface: solution of the Riemann problem for the stiffened gas equation of state. J. Appl. Phys. 93, 30903097.
9. Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.
10. Krechetnikov, R. & Homsy, G. M. 2009 Crown-forming instability phenomena in the drop splash problem. J. Colloid Interface Sci. 331, 555559.
11. Lesser, M. & Field, J. E. 1983 The impact of compressible liquids. Annu. Rev. Fluid Mech. 15, 97122.
12. Mani, M., Mandre, S. & Brenner, M. P. 2010 Events before droplet splashing on a solid surface. J. Fluid Mech. 647, 163185.
13. Mandre, S. & Brenner, M. P. 2012 The mechanism of a splash on a dry solid surface. J. Fluid Mech. 690, 148172.
14. Marmanis, H. & Thoroddsen, S. T. 1996 Scaling of the fingering pattern of an impacting drop. Phys. Fluids 8, 13441346.
15. Mundo, C., Sommerfeld, M. & Tropea, C. 1995 Droplet–wall collisions: experimental studies of the deformation and breakup process. Intl J. Multiphase Flow 21, 151173.
16. Oguz, H. N. & Prosperetti, A. 1989 Surface-tension effects in the contact of liquid surfaces. J. Fluid Mech. 203, 149171.
17. Rein, M. & Delplanque, J.-P. 2008 The role of air entrainment on the outcome of drop impact on a solid surface. Acta Mech. 201, 105118.
18. Rioboo, R., Tropea, C. & Marengo, M. 2001 Outcomes from a drop impact on solid surfaces. Atomiz. Sprays 11, 155165.
19. Roisman, I. V., Horvat, K. & Tropea, C. 2006 Spray impact: rim transverse instability initiating fingering and splash and description of a secondary spray. Phys. Fluids 18, 102104.
20. De Ruiter, J., Pepper, R. E. & Stone, H. A. 2010 Thickness of the rim of an expanding lamella near the splash threshold. Phys. Fluids 22, 022104.
21. Thoroddsen, S. T. 2002 The ejecta sheet generated by the impact of a drop. J. Fluid Mech. 451, 373381.
22. Thoroddsen, S. T., Etoh, T. G., Takehara, K., Ootsuka, K. N. & Hatsuki, Y. 2005 The air bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545, 203212.
23. Thoroddsen, S. T. & Sakakibara, J. 1998 Evolution of the fingering pattern of an impacting drop. Phys. Fluids 10, 13591374.
24. Thoroddsen, S. T., Takehara, K. & Etoh, T. G. 2010 Bubble entrapment through topological change. Phys. Fluids 22, 051701.
25. Thoroddsen, S. T., Thoraval, M.-J., Takehara, K. & Etoh, T. G. 2011 Droplet splashing by a sling-shot mechanism. Phys. Rev. Lett. 106, 034501.
26. Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.
27. van der Veen, R. C. A., Tran, T., Lohse, D. & Sun, C. 2012 Direct measurements of air layer profiles under impacting droplets using high-speed colour interferometry. Phys. Rev. E 85, 026315.
28. Vander Wal, R. L., Berger, B. M. & Mozes, S. D. 2006 The splash/non-splash boundary upon a dry surface and thin fluid film. Exp. Fluids 40, 2332.
29. Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nature Phys. 5, 697702.
30. Villermaux, E. & Bossa, B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412435.
31. Xu, L. 2010 Instability development of a viscous liquid drop impacting a smooth substrate. Phys. Rev. E 82, 025303.
32. Xu, L., Barcos, L. & Nagel, S. R. 2007 Splashing of liquids: interplay of surface roughness with surrounding gas. Phys. Rev. E 76, 066311.
33. Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.
34. Yarin, A. L. & Weiss, D. A. 1995 Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity. J. Fluid Mech. 283, 141173.
35. Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing Annu. Rev. Fluid Mech. 38, 159192.
36. Zhang, L. V., Brunet, P., Eggers, J. & Deegan, R. D. 2010 Wavelength selection in the crown splash. Phys. Fluids 22, 122105.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Thoroddsen et al. supplementary movie
Impact of a water drop viewed through a glass plate. Frame rate: 500,000 fps. Horizontal extent: 3.24 mm. Vertical extent: 3.51 mm. Impact velocity 3.8 m/s. Drop diameter 5.4 mm. We = 1070, Re = 20500.

 Video (1.5 MB)
1.5 MB
VIDEO
Movies

Thoroddsen et al. supplementary movie
Impact of a water drop viewed through a glass plate. Frame rate: 500,000 fps. Horizontal extent: 3.24 mm. Vertical extent: 3.51 mm. Impact velocity 3.8 m/s. Drop diameter 5.4 mm. We = 1070, Re = 20500.

 Video (234 KB)
234 KB
VIDEO
Movies

Thoroddsen et al. supplementary movie
Impact of a water drop viewed through a glass plate. Frame rate: 1,000,000 fps. Horizontal extent: 2.19 mm. Vertical extent: 1.96 mm. Impact velocity 4.8 m/s. Drop diameter 5.5 mm. We = 1740, Re = 26400.

 Video (1.4 MB)
1.4 MB
VIDEO
Movies

Thoroddsen et al. supplementary movie
Impact of a water drop viewed through a glass plate. Frame rate: 1,000,000 fps. Horizontal extent: 2.19 mm. Vertical extent: 1.96 mm. Impact velocity 4.8 m/s. Drop diameter 5.5 mm. We = 1740, Re = 26400.

 Video (978 KB)
978 KB
VIDEO
Movies

Thoroddsen et al. supplementary movie
Impact of a water drop viewed through a glass plate. Frame rate: 250,000 fps. Horizontal extent: 3.68 mm. Vertical extent: 4.50 mm. Impact velocity 5.4 m/s. Drop diameter 6.2 mm. We = 2480, Re = 33500.

 Video (940 KB)
940 KB
VIDEO
Movies

Thoroddsen et al. supplementary movie
Impact of a water drop viewed through a glass plate. Frame rate: 250,000 fps. Horizontal extent: 3.68 mm. Vertical extent: 4.50 mm. Impact velocity 5.4 m/s. Drop diameter 6.2 mm. We = 2480, Re = 33500.

 Video (142 KB)
142 KB
VIDEO
Movies

Thoroddsen et al. supplementary movie
Impact of a water drop viewed through a glass plate. Frame rate: 250,000 fps. Horizontal extent: 5.12 mm. Vertical extent: 5.62 mm. Impact velocity 5.4 m/s. Drop diameter 6.2 mm. We = 2480, Re = 33500

 Video (1.4 MB)
1.4 MB
VIDEO
Movies

Thoroddsen et al. supplementary movie
Impact of a water drop viewed through a glass plate. Frame rate: 250,000 fps. Horizontal extent: 5.12 mm. Vertical extent: 5.62 mm. Impact velocity 5.4 m/s. Drop diameter 6.2 mm. We = 2480, Re = 33500

 Video (235 KB)
235 KB
VIDEO
Movies

Thoroddsen et al. supplementary movie
Impact of a water drop viewed through a glass plate. Frame rate: 125,000 fps. Horizontal extent: 5.1 mm. Vertical extent: 5.4 mm. Impact velocity 3.8 m/s. Drop diameter 6.2 mm. We = 1100, Re = 22300

 Video (2.8 MB)
2.8 MB
VIDEO
Movies

Thoroddsen et al. supplementary movie
Impact of a water drop viewed through a glass plate. Frame rate: 125,000 fps. Horizontal extent: 5.1 mm. Vertical extent: 5.4 mm. Impact velocity 3.8 m/s. Drop diameter 6.2 mm. We = 1100, Re = 22300

 Video (212 KB)
212 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed