Skip to main content Accessibility help
×
Home

Maximizing the efficiency of a flexible propulsor using experimental optimization

  • Daniel B. Quinn (a1), George V. Lauder (a2) and Alexander J. Smits (a1) (a3)

Abstract

Experimental gradient-based optimization is used to maximize the propulsive efficiency of a heaving and pitching flexible panel. Optimum and near-optimum conditions are studied via direct force measurements and particle image velocimetry (PIV). The net thrust and power scale predictably with the frequency and amplitude of the leading edge, but the efficiency shows a complex multimodal response. Optimum pitch and heave motions are found to produce nearly twice the efficiencies of optimum heave-only motions. Efficiency is globally optimized when (i) the Strouhal number is within an optimal range that varies weakly with amplitude and boundary conditions; (ii) the panel is actuated at a resonant frequency of the fluid–panel system; (iii) heave amplitude is tuned such that trailing-edge amplitude is maximized while the flow along the body remains attached; and (iv) the maximum pitch angle and phase lag are chosen so that the effective angle of attack is minimized. The multi-dimensionality and multi-modality of the efficiency response demonstrate that experimental optimization is well-suited for the design of flexible underwater propulsors.

Copyright

Corresponding author

Email address for correspondence: danielq@princeton.edu

References

Hide All
Alben, S., Witt, C., Baker, T. V., Anderson, E. & Lauder, G. V. 2012 Dynamics of freely swimming flexible foils. Phys. Fluids 24, 051901.
Anderson, J. M., Streitlien, K., Barrett, D. S. & Triantafyllou, M. S. 1998 Oscillating foils of high propulsive efficiency. J. Fluid Mech. 360, 4172.
Borg, I. & Groenen, P. 2005 Modern Multidimensional Scaling. Springer.
Dai, H., Luo, H., Paulo, J. S., Ferreira de Sousa, A. & Doyle, J. F. 2012 Thrust performance of a flexible low-aspect ratio pitching plate. Phys. Fluids 24, 101903.
Daniel, T. L. & Combes, S. A. 2002 Flexible wings and fins: bending by inertial or fluid-dynamic force? Integr. Compar. Biol. 42, 10441049.
Dewey, P. A., Boschitch, B. M., Moored, K. W., Stone, H. A. & Smits, A. J. 2013 Scaling laws for the thrust production of flexible pitching panels. J. Fluid Mech. 732, 2946.
Eloy, C. 2012 Optimal strouhal number for swimming animals. J. Fluids Struct. 30, 205218.
Eloy, C. & Schouveiler, L. 2011 Optimisation of two-dimensional undulatory swimming at high reynolds number. Intl J. Non-Linear Mech. 46, 568576.
Gill, P. E., Murray, W. & Saunders, M. A. 2005 Snopt: an sqp algorithm for large-scale constrained optimization. SIAM Rev. 47 (1), 99131.
Heathcote, S. & Gursul, I. 2007 Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA J. 45 (5), 10661079.
Isogai, K. & Shinmoto, Y. 1999 Effects of dynamic stall on propulsive efficiency and thrust of flapping airfoil. AIAA J. 37 (10), 11451151.
Izraelevitz, J. S. & Triantafyllou, M. S. 2014 Adding in-line motion and model-based optimization offers exceptional force control authority in flapping foils. J. Fluid Mech. 742, 534.
Kang, C. K., Aono, H., Baik, Y. S., Bernal, L. P. & Shyy, W. 2013 Fluid dynamics of pitching of plunging flat plate at intermediate reynolds numbers. AIAA J. 51 (2), 315329.
Kang, C. K., Aono, H., Cesnik, C. E. S. & Shyy, W. 2011 Effects of flexibility on the aerodynamic performance of flapping wings. J. Fluid Mech. 689, 3274.
Katz, J. & Weihs, D. 1978 Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility. J. Fluid Mech. 88 (3), 485497.
Kern, S., Koumoutsakos, P. & Eschler, K. 2007 Optimization of anguilliform swimming. Phys. Fluids 19 (9), 91102.
Lauder, G. V., Flammang, B. E. & Alben, S. 2012 Passive robotic models of propulsion by the bodies and caudal fins of fish. Integr. Compar. Biol. 52, 576587.
Lauder, G. V., Lim, J., Shelton, R., Witt, C., Anderson, E. & Tangorra, J. L. 2011 Robotic models for studying undulatory locomotion in fishes. Mar. Technol. Soc. J. 45 (4), 4155.
Lewin, G. C. & Haj-Hariri, H. 2003 Modelling thrust generation of a two-dimensional heaving airfoil in a viscous fluid. J. Fluid Mech. 492, 339362.
Lighthill, J. 1975 Mathematical Biofluiddynamics. SIAM.
Lighthill, M. J. 1970 Aquatic animal propulsion of high hydromechanical efficiency. J. Fluid Mech. 44, 265301.
Liu, W., Xiao, Q. & Cheng, F. 2013 A bio-inspired study on tidal energy extraction with flexible flapping wings. Bioinspir. Biomim. 8 (3).
Low, K. H.2011 Current and future trends of biologically inspired underwater vehicles. Tech. Rep. Nanyang Technical University.
Masoud, H. & Alexeev, A. 2010 Resonance of flexible flapping wings at low Reynolds number. Phys. Rev. 81, 056304.
Michelin, S. & Llewellyn, S. S. G. 2009 Resonance and propulsion performance of a heaving flexible wing. Phys. Fluids 21, 071902.
Milano, M. & Gharib, M. 2005 Uncovering the physics of flapping flat plates with artificial evolution. J. Fluid Mech. 534, 403409.
Park, Y. J., Huh, T., Park, D. & Cho, K. J. 2014 Design of a variable-stiffness flapping mechanism for maximizing the thrust of a bio-inspired underwater robot. Bioinspir. Biomim. 9, 036002.
Paulo, J. S., Ferreira de Sousa, A. & Allen, J. J. 2011 Thrust efficiency of harmonically oscillating flexible flat plates. J. Fluid Mech. 674, 4366.
Pederzani, J. & Haj-Hariri, H. 2006 Analysis of heaving flexible airfoils in viscous flow. AIAA J. 44 (11), 27732779.
Prempraneerach, P., Hover, F. S. & Triantafyllou, M. S. 2003 The effect of chordwise flexibility on the thrust and efficiency of a flapping foil. In Proceedings of the Thirteenth International Symposium on Unmanned Untethered Submersible Technology, Autonomous Undersea Systems Institute, New Hampshire.
Quinn, D. B., Lauder, G. V. & Smits, A. J. 2014 a Scaling the propulsive performance of heaving flexible panels. J. Fluid Mech. 738, 250267.
Quinn, D. B., Moored, K. W., Dewey, P. A. & Smits, A. J. 2014 b Unsteady propulsion near a solid boundary. J. Fluid Mech. 742, 152170.
Ramananarivo, S., Godoy-Diana, R. & Thiria, B. 2013 Passive elastic mechanism to mimic fish-muscle action in anguilliform swimming. J. R. Soc. Interface 10, 20130667.
Raspa, V., Ramananarivo, S., Thiria, B. & Godoy-Diana, R. 2014 Vortex-induced drag and the role of aspect ratio in undulatory swimmers. Phys. Fluids 26, 041701.
van Rees, W. M., Gazzola, M. & Koumoutsakos, P. 2013 Optimal shapes for anguilliform swimmers at intermediate reynolds numbers. J. Fluid Mech. 722, R3.
Shelton, R., Thornycroft, P. & Lauder, G. V. 2014 Undulatory locomotion by flexible foils as biomimetic models for understanding fish propulsion. J. Expl Biol. 217, 21102120.
Snyman, J. A. 2005 Practical Mathematical Optimization: An Introduction to Basic Optimization Theory and Classical and New Gradient-Based Algorithms. Springer.
Stanislas, M., Okamoto, K., Kahler, C. J. & Westerweel, J. 2005 Main results of the second international PIV challenge. Exp. Fluids 39, 170191.
Taylor, G. K., Nudds, R. L. & Thomas, A. L. R. 2003 Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature 425, 707711.
Tokic, G. & Yue, D. K. P. 2012 Optimal shape and motion of undulatory swimming organisms. Proc. R. Soc. Lond. B 282; doi:10.1098/rspb.2012.0057.
Triantafyllou, G. S., Triantafyllou, M. S. & Grosenbaugh, M. A. 1993 Optimal thrust development in oscillating foils with application to fish propulsion. J. Fluids Struct. 7, 205224.
Triantafyllou, M. S., Triantafyllou, G. S. & Yue, D. K. P. 2000 Hydrodynamics of fishlike swimming. Annu. Rev. Fluid Mech. 32 (1), 3353.
Tuncer, I. H. & Kaya, M. 2005 Optimization of flapping airfoils for maximum thrust and propulsive efficiency. AIAA J. 43 (11), 23292336.
Wang, Z. J. 2000 Vortex shedding and frequency selection in flapping flight. J. Fluid Mech. 410, 323341.
Weaver, W., Timoshenko, S. P. & Young, D. H. 1990 Vibration Problems in Engineering, 5th edn. John Wiley and Sons.
Wu, T. Y. 1971 a Hydrodynamics of swimming propulsion. Part 1. Swimming of a two-dimensional flexible plate at variable forward speeds in an inviscid fluid. J. Fluid Mech. 46 (2), 337355.
Wu, T. Y. 1971 b Hydrodynamics of swimming propulsion. Part 2. Some optimum shape problems. J. Fluid Mech. 46 (3), 521524.
Zhu, Q. 2007 Numerical simulation of a flapping foil with chordwise or spanwise flexibility. AIAA J. 45 (10), 24482457.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed