Skip to main content Accessibility help

Intermittency route to thermoacoustic instability in turbulent combustors

  • Vineeth Nair (a1), Gireeshkumaran Thampi (a1) and R. I. Sujith (a1)


The dynamic transition from combustion noise to combustion instability was investigated experimentally in two laboratory-scale turbulent combustors (namely, swirl-stabilized and bluff-body-stabilized backward-facing-step combustors) by systematically varying the flow Reynolds number. We observe that the onset of combustion-driven oscillations is always presaged by intermittent bursts of high-amplitude periodic oscillations that appear in a near-random fashion amidst regions of aperiodic low-amplitude fluctuations. These excursions to periodic oscillations last longer in time as operating conditions approach instability and finally the system transitions completely into periodic oscillations. A continuous measure to quantify this bifurcation in dynamics can be obtained by defining an order parameter as the probability of the signal amplitude exceeding a predefined threshold. A hysteresis zone was observed in the bluff-body-stabilized configuration that was absent in the swirl-stabilized configuration. The recurrence properties of the dynamics of intermittent burst oscillations were quantified using recurrence plots and the distribution of the aperiodic phases was examined. From the statistics of these aperiodic phases, robust early-warning signals of an impending combustion instability may be obtained.


Corresponding author

Email address for correspondence:


Hide All
Arndt, C. M., Steinberg, A. M., Boxx, I. G., Meier, W., Aigner, M. & Carter, C. D.2010 Flow-field and flame dynamics of a gas turbine model combustor during transition between thermo-acoustically stable and unstable states. Proceedings of the ASME Turbo Expo, vol. 2A, Paper GT2010-22830, pp. 677–687.
Candel, S. 2002 Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29, 128.
Chakravarthy, S. R., Shreenivasan, O. J., Boehm, B., Dreizler, A. & Janicka, J. 2007a Experimental characterization of onset of acoustic instability in a nonpremixed half-dump combustor. J. Acoust. Soc. Am. 122, 120127.
Chakravarthy, S. R., Sivakumar, R. & Shreenivasan, O. J. 2007b Vortex-acoustic lock-on in bluff-body and backward-facing step combustors. Sadhana 32, 145154.
Clavin, P., Kim, J. S. & Williams, F. A. 1994 Turbulence-induced noise effects on high-frequency combustion instabilities. Combust. Sci. Technol. 96, 6184.
Culick, F. E. C.2006 Unsteady motions in combustion chambers for propulsion systems. AGARDograph RTO-AG-AVT-039.
Gotoda, H., Amano, M., Miyano, T., Ikawa, T., Maki, K. & Tachibana, S. 2012 Characterization of complexities in combustion instability in a lean premixed gas-turbine model combustor. Chaos 22 (4), 043128.
Gotoda, H., Nikimoto, H., Miyano, T. & Tachibana, S. 2011 Dynamic properties of combustion instability in a lean premixed gas-turbine combustor. Chaos 21, 013124.
Haken, H. 1985 Laser Light Dynamics, Light, vol. 2. North-Holland.
Hong, J. G., Oh, K. C., Lee, U. D. & Shin, H. D. 2008 Generation of low-frequency alternative flame behaviors in a lean premixed combustor. Energy & Fuels 22 (5), 30163021.
Kabiraj, L., Saurabh, A., Wahi, P. & Sujith, R. I. 2012 Route to chaos for combustion instability in ducted laminar premixed flames. Chaos 22, 023129.
Kabiraj, L. & Sujith, R. I. 2012 Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. J. Fluid Mech. 713, 376397.
Kabiraj, L., Sujith, R. I. & Wahi, P. 2012a Bifurcations of self-excited ducted laminar premixed flames. Trans. ASME: J. Engng Gas Turbines Power 134, 031502.
Kabiraj, L., Sujith, R. I. & Wahi, P. 2012b Investigating the dynamics of combustion-driven oscillations leading to lean blowout. Fluid Dyn. Res. 44, 031408.
Komarek, T. & Polifke, W. 2010 Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner. Trans. ASME: J. Engng Gas Turbines Power 132, 061503.
Lieuwen, T. C. 2002 Experimental investigation of limit-cycle oscillations in an unstable gas turbine combustor. J. Propul. Power 18, 6167.
Lieuwen, T. 2005 Online combustor stability margin assessment using dynamic pressure data. Trans. ASME: J. Engng Gas Turbines Power 127 (3), 478482.
Lieuwen, T., Neumeier, Y. & Zinn, B. T. 1998 The role of unmixedness and chemical kinetics in driving combustion instabilities in lean premixed combustors. Combust. Sci. Technol. 135 (1–6), 193211.
Marwan, N., Romano, M. C., Thiel, M. & Kurths, J. 2007 Recurrence plots for the analysis of complex systems. Phys. Rep. 438, 237329.
Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A. & Kurths, J. 2002 Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys. Rev. E 66, 026702.
McManus, K. R., Poinsot, T. & Candel, S. M. 1993 A review of active control of combustion instabilities. Prog. Energy Combust. Sci. 16, 129.
Nair, V. & Sujith, R. I. 2013 Identifying homoclinic orbits in the dynamics of intermittent signals through recurrence quantification. Chaos 23, 033136.
Nair, V. & Sujith, R. I.2014. A reduced-order model for the onset of combustion instability: physical mechanisms for intermittency and precursors. In Proceedings of the 35th International Symposium on Combustion, 3–8 August, San Francisco, CA. Proc. Combust. Inst. 35, doi: 10.1016/j.proci.2014.07.007.
Nair, V., Thampi, G., Karuppusamy, S., Gopalan, S. & Sujith, R. I. 2013 Loss of chaos in combustion noise as a precursor of impending combustion instability. Int. J. Spray Comb. Dyn. 5, 273290.
Strahle, W. C. 1978 Combustion noise. Prog. Energy Combust. Sci. 4, 157176.
Wilke, C. R. 1950 A viscosity equation for gas mixtures. J. Chem. Phys. 18, 517519.
Zinn, B. T. & Lieuwen, T. C. 2005 Combustion instabilities: basic concepts. In Combustion Instabilities in Gas Turbine Engines: Operational Experience, Fundamental Mechanisms, and Modeling (ed. Lieuwen, T. C. & Yang, V.), Progress in Astronautics and Aeronautics, vol. 210, p. chap. 1. AIAA.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed