Skip to main content Accessibility help

Initial surface deformations during impact on a liquid pool

  • Wilco Bouwhuis (a1), Maurice H. W. Hendrix (a1) (a2), Devaraj van der Meer (a1) and Jacco H. Snoeijer (a1) (a3)


A tiny air bubble can be entrapped at the bottom of a solid sphere that impacts onto a liquid pool. The bubble forms due to the deformation of the liquid surface by a local pressure buildup inside the surrounding gas, as also observed during the impact of a liquid drop on a solid wall. Here, we perform a perturbation analysis to quantitatively predict the initial deformations of the free surface of a liquid pool as it is approached by a solid sphere. We study the natural limits where the gas can be treated as a viscous fluid (Stokes flow) or as an inviscid fluid (potential flow). For both cases we derive the spatiotemporal evolution of the pool surface, and recover some of the recently proposed scaling laws for bubble entrapment. On inserting typical experimental values for the impact parameters, we find that the bubble volume is mainly determined by the effect of gas viscosity.


Corresponding author

Email address for correspondence:


Hide All
Bergmann, R. P. H. M., van der Meer, D., Gekle, S., van der Bos, J. & Lohse, D. 2009 Controlled impact of a disk on a water surface: cavity dynamics. J. Fluid Mech. 633, 381409.
Bouwhuis, W., van der Veen, R. C. A., Tran, T., Keij, D. L., Winkels, K. G., Peters, I. R., van der Meer, D., Sun, C., Snoeijer, J. H. & Lohse, D. 2012 Maximal air bubble entrainment at liquid-drop impact. Phys. Rev. Lett. 109, 264501.
Bouwhuis, W., Winkels, K. G., Peters, I. R., Brunet, P., van der Meer, D. & Snoeijer, J. H. 2013 Oscillating and star-shaped drops levitated by an airflow. Phys. Rev. E 88, 023017.
van Dam, D. & Le Clerc, C. 2004 Experimental study of an ink-jet printed droplet on a solid substrate. Phys. Fluids 16, 34033414.
Davis, R. H., Serayssol, J.-M. & Hinch, E. J. 1986 The elastohydrodynamic collision of two spheres. J. Fluid Mech. 163, 479497.
Deng, Q., Anilkumar, A. V. & Wang, T. G. 2009 The phenomenon of bubble entrapment during capsule formation. J. Colloid Interface Sci. 333 (2), 523532.
Do-Quang, M. & Amberg, G. 2009 The splash of a solid sphere impacting on a liquid surface: numerical simulation of the influence of wetting. Phys. Fluids 21 (2), 022102.
Driscoll, M. M. & Nagel, S. R. 2011 Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107, 154502.
Hicks, P. D., Ermanyuk, E. V., Gavrilov, N. V. & Purvis, R. 2012 Air trapping at impact of a rigid sphere onto a liquid. J. Fluid Mech. 695, 310320.
Hicks, P. D. & Purvis, R. 2011 Air cushioning in droplet impacts with liquid layers and other droplets. Phys. Fluids 23, 062104.
Howison, S. D., Ockendon, J. R. & Wilson, S. K. 1991 Incompressible water-entry problems at small deadrise angles. J. Fluid Mech. 222, 215230.
Klaseboer, E., Chevaillier, J. P., Gourdon, C. & Masbernat, O. 2000 Film drainage between colliding drops at constant approach velocity: experiments and modeling. J. Colloid Interface Sci. 229 (1), 274285.
Klaseboer, E., Manica, R. & Chan, D. Y. C. 2014 Universal behavior of the initial stage of drop impact. Phys. Rev. Lett. 113, 194501.
Korobkin, A. A., Ellis, A. S. & Smith, F. T. 2008 Trapping of air in impact between a body and shallow water. J. Fluid Mech. 611, 365394.
Korobkin, A. A. & Pukhnachov, V. V. 1988 Initial stage of water impact. Annu. Rev. Fluid Mech. 20, 159185.
Lamb, H. 1957 Hydrodynamics, 6th edn. Cambridge University Press.
Mandre, S. & Brenner, M. P. 2012 The mechanism of a splash on a dry solid surface. J. Fluid Mech. 690, 148172.
Marston, J. O., Vakarelski, I. U. & Thoroddsen, S. T. 2011 Bubble entrapment during sphere impact onto quiescent liquid surfaces. J. Fluid Mech. 680, 660670.
Moore, M. R. & Oliver, J. M. 2014 On air cushioning in axisymmetric impacts. IMA J. Appl. Maths 79, 661680.
Oguz, H. N. & Prosperetti, A. 1993 Dynamics of bubble growth and detachment from a needle. J. Fluid Mech. 257, 111145.
Pozrikidis, C. 1997 Introduction to Theoretical and Computational Fluid Dynamics, 1st edn. Oxford University Press.
Reynolds, O. 1886 On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil. Phil. Trans. R. Soc. Lond. 177, 157234.
Smith, F. T., Li, L. & Wu, G. X. 2003 Air cushioning with a lubrication/inviscid balance. J. Fluid Mech. 482, 291318.
Snoeijer, J. H., Brunet, P. & Eggers, J. 2009 Maximum size of drops levitated by an air cushion. Phys. Rev. E 79, 036307.
Thoroddsen, S. T., Etoh, T. G., Takehara, K., Ootsuka, N. & Hatsuki, A. 2005 The air bubble entrapped under a drop impacting on a solid surface. J. Fluid Mech. 545, 203212.
Thoroddsen, S. T., Thoraval, M. J., Takehara, K. & Etoh, T. G. 2012 Micro-bubble morphologies following drop impacts onto a pool surface. J.  Fluid Mech. 708, 469479.
Tran, T., de Maleprade, H., Sun, C. & Lohse, D. 2013 Air entrainment during impact of droplets on liquid surfaces. J. Fluid Mech. 726, R3.
Wilson, S. K. 1991 A mathematical model for the initial stages of fluid impact in the presence of a cushioning fluid layer. J. Engng Maths 25, 265285.
Yiantsios, S. G. & Davis, R. H. 1990 On the buoyancy-driven motion of a drop towards a rigid surface or a deformable interface. J. Fluid Mech. 217, 547573.
Yoon, Y., Borrell, M., Park, C. C. & Leal, L. G. 2005 Viscosity ratio effects on the coalescence of two equal-sized drops in a two-dimensional linear flow. J. Fluid Mech. 525, 355379.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed