Skip to main content Accessibility help
×
Home

Flow over a flat plate with uniform inlet and incident coherent gusts

  • Imran Afgan (a1) (a2) (a3), Sofiane Benhamadouche (a4) (a5), Xingsi Han (a1), Pierre Sagaut (a1) and Dominique Laurence (a2) (a4)...

Abstract

The flow over a flat plate at a Reynolds number of 750 is numerically investigated via fine large-eddy simulation (LES), first at normal ( $90\textdegree $ ) and then at oblique ( $45\textdegree $ ) incidence flow direction with a uniform steady inlet. The results are in complete agreement with the direct numerical simulation (DNS) and experimental data, thereby serving as a validation for the present simulations. For the normal ( $90\textdegree $ ) uniform inflow case, coherent vortices are alternately shed from both leading edges of the plate, whereas for the oblique ( $45\textdegree $ ) uniform inflow case the vortices shed from the two sides of the plate interact strongly resulting in a quasi-periodic force response. The normal flat plate is then analysed with an incident gust signal with varying amplitude and time period. For these incident coherent gust cases, a reference test case with variable coherent inlet is first studied and the results are compared to a steady inlet simulation, with a detailed analysis of the flow behaviour and the wake response under the incident gust. Finally, the flat plate response to 16 different gust profiles is studied. A transient drag reconstruction for these incident coherent gust cases is then presented based on a frequency-dependent transfer function and phase spectrum analysis.

Copyright

Corresponding author

Email address for correspondence: afgan_imran@hotmail.com

References

Hide All
Afgan, I., Kahil, Y., Benhamadouche, S. & Sagaut, P. 2011 Lareg Eddy Simulation of the flow around single and two side-by-side cylinders at subcritical Reynolds numbers. Phys. Fluids 23, 075101.
Afgan, I., Moulinec, C., Prosser, R. & Laurence, D. 2007 Large Eddy Simulation of turbulent flow for wall mounted cantilever cylinders of aspect ratio 6 and 10. Intl J. Heat Fluid Flow 28, 561574.
Archambeau, F., Mchitoua, N. & Sakiz, M. 2004 Code_Saturne: a finite volume code for the computation of turbulent incompressible flows-industrial applications. Intl J. Finite Vol. 1, ISSN 1634(0655).
Bearman, P. W. 1971 Investigation of forces on flat plate normal to a turbulent flow. J. Fluid. Mech. 46, 177198.
Benhamadouche, S., Laurence, D., Jarrin, N., Afgan, I. & Moulinec, C. 2005 Large Eddy Simulation of flow across in-line tube bundles. In Nuclear Reactor Thermal Hydraulics, NURETH-11. Avignon, France. Paper 405.
Bierbooms, W. 2004 A gust model for wind turbine design. JSME Intl J. B 47 (2), 378386.
Bierbooms, W. & Cheng, P.-W. 2002 Stochastic gust model for design calculation of wind turbine. J. Wind Engng Ind. Aerodyn. 90, 12371251.
Breuer, M. & Jovicic, N. 2001 Separated flow around a flat plate at high incidence: an LES investigation. J. Turbul. 2 (18).
Chen, J. M. & Fang, Y.-C. 1996 Strouhal numbers of inclined flat plates. J. Wind Engng Ind. Aerodyn. 61, 99112.
Davenport, A. G. 1961 The application of statistical concepts to the wind loading of structures. Proc. Inst. Civil Engrs 19, 449472.
Davenport, A. G. 1967 Gust loading factors. J. Struct. Div. 93 (3), 1134.
Dennis, S. C. R., Wang-Qiang, C. M. & Launay, J. L. 1993 Viscous flow normal to a flat plate at moderate Reynolds numbers. J. Fluid Mech. 248, 605635.
Drabble, M. J., Grant, I., Armstrong, B. J. & Barnes, F. H. 1990 The aerodynamic admittance of a square plate in a flow with a fully coherent fluctuation. Phys. Fluids A 2 (6), 10051013.
Fage, A. & Johansen, F. C. 1927 On the flow of air behind an inclined flat plate of infinite span. Proc. R. Soc. Lond. A 116 (773), 170197.
Fox, T. A. & West, G. S. 1990 On the use of end plates with circular cylinders. Exp. Fluids 9, 231239.
Goyette, S., Brasseur, O. & Beniston, M. 2003 Application of a new wind gust parametrization: multi-scale case studies performed with the Canadian regional climate model. J. Geophys. Res. 108 (D13), 4374.
Harper, B. A., Kepert, J. D. & Ginger, J. D. 2008 Guidelines for converting between various wind averaging periods in tropical cyclone conditions. World Meteorological Organization Report. Appendix II.
Hunt, J. C. R., Wray, A. A. & Moin, P. 1988 Eddies, stream and convergence zones in turbulent flows. Report CTR-S88. Center for Turbulent Research, Stanford University.
Hussain, A. K. M. F. 1986 Coherent structures and turbulence. J. Fluid Mech. 173, 303356.
Julien, S., Lasheras, J. & Chomaz, J.-M. 2003 Three-dimensional instability and vorticity patters in the wake of a flat plate. J. Fluid Mech. 479, 155189.
Julien, S., Ortiz, S. & Chomaz, J.-M. 2004 Secondary instability mechanisms in the wake of a flat plate. Eur. J. Mech. B/Fluids 23, 157165.
Kim, D. H., Yang, K. S. & Senda, M. 2004 Large eddy simulation of turbulent flow past a square cylinder confined in a channel. Comput. Fluids 33, 81966.
Kiya, M. & Matsumura, M. 1988 Incoherent turbulence structure in the near wake of a normal plate. J. Fluid Mech. 190, 157165.
Koumoutsakos, P. & Shiels, D. 1996 Simulations of the viscous flow normal to an impulsively started and uniformly accelerated flat plate. J. Fluid Mech. 328, 177227.
Lamont, P. J. & Hunt, B. L. 1980 The impingement of underexpanded, axisymmetric jets on perpendicular and inclined flat plates. J. Fluid Mech. 100, 471511.
Leder, A. 1991 Dynamics of fluid mixing in separated flows. Phys. Fluids A 3 (7), 17411748.
Lighthill, M. J. 1954 The response of laminar skin friction and heat transfer to fluctuations in the stream velocity. Proc. R. Soc. Lond. A 224, 123.
Mazharoǧlu, Ç. & Hacışevki, H. 1999 Coherent and incoherent flow structures behind a normal flat plate. Exp. Therm. Fluid Sci. 19, 160167.
Moser, R. & Balachandar, S. 1998 Self-similarity of time-evolving plane wakes. J. Fluid Mech. 367, 255289.
Moulinec, C., Benhamadouche, S., Laurence, D. & Peric, M. 2005 LES in a U-bend pipe meshed by polyhedral cells. In ERCOFTAC ETMM-6 Conference. Elsevier.
Najjar, F. M. & Balachandar, S. 1998 Low frequency unsteadiness in the wake of a normal flat plate. J. Fluid Mech. 370, 101147.
Najjar, F. M. & Vanka, S. P. 1995a Simulations of the unsteady separated flow past a normal flat plate. Intl J. Numer. Meth. Fluids 21, 525547.
Najjar, F. M. & Vanka, S. P. 1995b Effects of intrinsic three-dimensionality on the drag characteristics of a normal flat plate. Phys. Fluids 7 (10), 25162518.
Nakagawa, S., Nitta, K. & Senda, M. 1999 An experimental study on unsteady turbulent near wake of a rectangular cylinder in channel flow. Exp. Fluids 27 (3), 284294.
Narasimhamurthy, V. D. & Andersson, H. I. 2009 Numerical simulation of the turbulent wake behind a normal flat plate. Intl J. Heat Fluid Flow 30, 10371043.
Norberg, C. 1994 An experimental investigation of the flow around a circular cylinder: influence of aspect ratio. J. Fluid Mech. 258, 287316.
Norberg, C. 2003 Fluctuating lift on a circular cylinder: review and new measurements. J. Fluids Struct. 17, 5796.
Pagnini, L. C. & Solari, G. 2002 Gust buffeting and turbulence uncertainties. J. Wind Engng Ind. Aerodyn. 90, 441459.
Perry, A. E. & Steiner, T. R. 1987 Large-scale vortex structures in turbulent wakes behind bluff bodies. Part 1. Vortex formation processes. J. Fluid Mech. 174, 233270.
Press, W. H, Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 1996 Numerical Recipes in Fortran 77: Vol 1: The Art of Scientific Computing, 2nd edn. Cambridge University Press, ISBN: 0-521-43064-X.
Quinn, A. D., Baker, C. J. & Wright, N. G. 2001 Wind and vehicle induced forces on flat plates–Part 1: wind induced force. J. Wind Engng Ind. Aerodyn. 89, 817829.
Rhie, C. & Chow, W. 1982 A numerical study of the flow past an isolated aerofoil with trailing edge separation. AIAA J. 21, 15251532.
Roshko, A. 1993 Prespectives on bluff body aerodynamics. J. Wind Engng Ind. Aerodyn. 49, 79100.
Saha, A. K. 2007 Far-wake characteristics of two-dimensional flow past a normal flat plate. Phys. Fluids 19, 128110.
Solari, G. & Piccardo, G. 2000 Probabilistic 3-D turbulence modelling for gust buffeting of structures. Prob. Engng Mech. 16, 7386.
Steiner, T. R. & Perry, A. E. 1987 Large-scale vortex structures in turbulent wakes behind buff bodies. Part 2. Far-wake structures. J. Fluid Mech. 174, 271298.
Tamaddon-Jahromi, H. R., Townsend, P. & Webster, M. F. 1994 Unsteady viscous flow past a flat plate orthogonal to the flow. Comput. Fluids 23 (2), 433446.
Thompson, M. C., Hourigan, K., Ryan, K. & Sheard, G. J. 2006 Wake transition of two-dimensional cylinders and axisymmetric bluff bodies. J. Fluids Struct. 22, 793806.
Van Doormal, J. P. & Raithby, G. D. 1984 Enhancements of the SIMPLE method for predicting incompressible fluid flows. Numer. Heat Transfer 7, 147163.
Vickery, B. J. 1965 On the flow behind a coarse grid and its use as a model of atmospheric turbulence in studies related to wind loads in buildings. National Physical Laboratory. Aero Rep. No. 1143.
Wu, S. J., Miau, J. J., Hu, C. C. & Chou, J. H. 2005 On low-frequency modulations and three-dimensionality in vortex shedding behind a normal plate. J. Fluid Mech. 526, 117146.
Yao, Y. F., Thomas, T. G., Sandham, N. D. & Williams, J. J. R. 2001 Direct numerical simulation of turbulent flow over a rectangular trailing edge. Theor. Comput. Fluid Dyn. 14, 337358.
Yeung, W. W. H. & Parkinson, G. V. 1997 On the steady separated flow around and inclined flat plate. J. Fluid Mech. 333, 403413.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed