Skip to main content Accessibility help
×
Home

Flow and solute transport through a periodic array of vertical cylinders in shallow water

  • Xiaoyu Guo (a1), Benlong Wang (a1) and Chiang C. Mei (a1) (a2)

Abstract

A micro-mechanical theory is proposed for the prediction of macro-scale properties of flow and dispersion in a current through a periodic array of vertical cylinders standing on a horizontal bed. A two-scale analysis reduces the numerical task to the solution of two canonical boundary value problems in a unit cell. Using measured data on the drag coefficient measured for an array in open channels, the eddy viscosity in the interstitial flow on the micro-scale is calculated for a wide range of Reynolds numbers. The macro-scale relation between the mean velocity and the surface gradient is found in the form of a nonlinear Darcy’s law. The interstitial velocity is then used to derive the macro-scale convection diffusion equation for the solute concentration, also by a two-scale analysis. The Taylor dispersivity and the total effective diffusivity are computed for a wide range of flow rates and solid fractions. Features specific to the periodic geometry are pointed out.

Copyright

Corresponding author

Email address for correspondence: ccmei@mit.edu

References

Hide All
Alshare, A. A., Strykowski, P. J. & Simon, T. W. 2010 Modeling of unsteady and steady fluid flow, heat transfer and dispersion in porous media using unit cell scale. Intl J. Heat Mass Transfer 53, 22942310.
Amaral Souto, H. P. & Moyne, C. 1997a Dispersion in two-dimensional periodic porous media. Part I. Hydrodynamics. Phys. Fluids 8, 22432252.
Amaral Souto, H. P. & Moyne, C. 1997b Dispersion in two-dimensional periodic porous media. Part II. Dispersion tensor. Phys. Fluids 8, 22532263.
Bagchi, P. & Balachandar, S. 2004 Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech. 518, 95123.
Bear, J. 1988 Dynamics of Fluids in Porous Media. Dover.
Brenner, H. 1980 Dispersion resulting from flow through spatially periodic porous media. Phil. Trans. R. Soc. Lond. A 297, 81133.
Carbonell, R. G. & Whittaker, S. 1983 Dispersion in pulsed systems – II: theoretical development for passive dispersion in porous media. Chem. Engng Sci. 38, 17951802.
Carman, P. C. 1937 Fluid flow throughout granular beds. Trans. Inst. Chem. Engrs 15, 150166.
Cheng, N. S. & Nguyen, H. T. 2011 Hydraulic radius for evaluating resistance induced by simulated emergent vegetation in open-channel flows. J. Hydraul. Engng ASCE 137 (9), 9951004.
Eidsath, A., Carbonell, R. G., Whittaker, S. & Herman, L. R. 1983 Dispersion in pulsed systems – III: comparison between theory and experiments for packed beds. Chem. Engng Sci. 38, 18031816.
Ene, H. L. & Sanchez-Palencia, E. 1975 Equations et phénoméne de surface pour l’ecoulement dan un modéle de milieu poreux. J. Méc. 4, 73108.
Fung, Y. C. 1965 Foundations of Solid Mechanics. Prentice-Hall.
Ghaddar, C. K. 1995 On the permeability of unidirectional fibrous media: a parallel computational approach. Phys. Fluids 7, 25632586.
Keller, J. B. 1980 Darcy’s law for flow in porous media and the two space method. In Nonlinear Partial Differential Equations in Engineering and Applied Sciences (ed. Sternberg, R. L., Kalinowski, A. J. J. & Papadakis, J. S.), pp. 429443. Dekker.
Koch, D. L. & Brady, J. F. 1985 Dispersion in fixed beds. J. Fluid Mech. 154, 399427.
Koch, D. L. & Brady, J. F. 1987 The symmetry properties of the effective diffusivity in anisotropic porous media. Phys. Fluids 30, 642650.
Koch, D. L., Cox, R. G., Brenner, H. & Brady, J. F. 1989 The effect of order on dispersion in porous media. J. Fluid Mech. 200, 173188.
Koch, D. L. & Ladd, A. J. C. 1997 Moderate Reynolds number flows through periodic and random arrays of aligned cylinders. J. Fluid Mech. 349, 3166.
Lightbody, A. E. & Nepf, H. M. 2006a Prediction of velocity profiles and longitudinal dispersion in emergent salt marsh vegetation. Limnol. Oceanogr. 51, 218228.
Lightbody, A. E. & Nepf, H. M. 2006b Prediction of near-field shear dispersion in an emergent canopy with heterogeneous morphology. Environ. Fluid Mech. 6, 477488.
Liu, D., Diplas, P., Fairbanks, J. D. & Hodges, C. C. 2008 An experimental study of flow through rigid vegetation. J. Geophys. Res. 113, F04015-1-16.
Mattis, S., Dawson, C., Kees, C. & Farthing, M. 2012 Numerical modeling of drag for flow through vegetated domains and porous structures. Adv. Water Resour. 39, 4459.
Mazda, Y., Kobashi, D. & Okada, S. 2005 Tidal-scale hydrodynamics within mangrove swamps. Wetlands Ecol. Manage. 13, 647655.
Meftah, M. B. & Mossa, M. 2013 Prediction of channel flow characteristics through square arrays of emergent cylinders. Phys. Fluids 25, 045102-1-21.
Mei, C. C. 1992 Method of homogenization applied to dispersion in porous media. Trans. Porous Med. 9, 261274.
Mei, C. C. & Auriault, J.-L. 1991 The effect of weak inertia on flow through a porous medium. J. Fluid Mech. 222, 647663.
Mei, C. C., Chan, I. C. & Liu, P. L.-F. 2013 Waves of intermediate length through an array of vertical cylinders. Environ. Fluid Mech. 14, 235261.
Mei, C. C., Chan, I. C., Liu, P. L.-F., Huang, Z. & Zhang, W. 2011 Long waves through emergent coastal vegetation. J. Fluid Mech. 687, 461491.
Nepf, H. M. 1999 Drag, turbulence, and diffusion in flow through emergent vegetation. Water Resour. Res. 35 (2), 479489.
Nepf, H. M., Sullivan, J. A. & Zavistoski, R. A. 1997 A model for diffusion within emergent vegetation. Limnol. Oceanogr. 42 (8), 17351745.
Pope, S. 2000 Turbulent Flows, p. 95. Cambridge University Press.
Raupach, M. R. & Thom, A. S. 1981 Turbulence in and above plant canopies. Annu. Rev. Fluid Mech. 13, 97129.
Stoesser, T., Kim, S. J. & Diplas, P. 2010 Turbulent flow through idealized emergent vegetation. ASCE J. Hydraul. Engng 136 (12), 10031017.
Su, X. H. & Li, C. W. 2002 Large eddy simulation of free surface turbulent flow in partly vegetated open channels. Intl J. Numer. Meth. Fluids 39, 919937.
Tanino, Y. & Nepf, H. M. 2008 Lateral dispersion in random cylinder arrays at high Reynolds number. J. Fluid Mech. 600, 339371.
Tominaga, Y. & Stathopoulos, T. 2007 Turbulent Schmidt numbers for CFD analysis with various types of flow field. Atmos. Environ. 41, 80918099.
Umidea, S. & Yang, W. J. 1999 Interaction of von Karman vortices and intersecting main streams in staggered tube bundles. Exp. Fluids 26, 389396.
White, B. L. & Nepf, H. M. 2003 Scalar transport in random cylinder arrays at moderate Reynolds number. J. Fluid Mech. 487, 4379.
Wilson, C. A. M. E., Yagci, O., Rauch, H.-P. & Olsen, N. R. B. 2006 3D numerical modeling of a willow-vegetated river/floodplain system. J. Hydrol. 327, 1321.
Wodie, J.-C. & Levy, T. 1991 Correction nonlineare de la loi de Darcy. C. R. Acad. Sci. Paris 312, 157161.
Wolanski, E. 1992 Hydrodynamics of mangrove swamps and their coastal waters. Hydrobiologia 247, 141161.
Wolanski, E., Jones, M. & Bunt, J. S. 1980 Hydrodynamics of a tidal creek-mangrove swamp system. Austral. J. Mar. Freshwat. Res. 31, 431450.
Wu, J.-S. & Faeth, G. M. 1994a Sphere wakes at moderate Reynolds numbers in a turbulent environment. AIAA J. 32 (3), 535541.
Wu, J.-S. & Faeth, G. M. 1994b Effect of ambient turbulence intensity on sphere wake at intermediate Reynolds numbers. AIAA J. 33 (1), 171173.
Zdravkovich, M. M. 2000 Flow around Circular Cylinders, Vol. 2, Applications. Oxford University Press.
Zhang, M., Li, C. W. & Shen, Y. 2010 A 3D nonlinear $k$ $\epsilon $ turbulent model for prediction of flow and mass transport in channel with vegetation. Appl. Math. Model. 34, 10211031.
Zhang, M., Li, C. W. & Shen, Y. 2013 Depth-averaged modeling of free surface flows in open channels with emerged and submerged vegetation. Appl. Math. Model. 37, 540553.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed