Skip to main content Accessibility help
×
Home

Experimental investigation of torque hysteresis behaviour of Taylor–Couette Flow

  • M. Gul (a1), G. E. Elsinga (a1) and J. Westerweel (a1)

Abstract

This paper describes the hysteresis in the torque for Taylor–Couette flow in the turbulent flow regime for different shear Reynolds numbers, aspect ratios and boundary conditions. The hysteresis increases with decreasing shear Reynolds number and becomes more pronounced as the aspect ratio is increased from 22 to 88. Measurements conducted in two different Taylor–Couette set-ups depict the effect of the flow conditions at the ends of the cylinders on the flow hysteresis by showing reversed hysteresis behaviour. In addition, the flow structure in the different branches of the hysteresis loop was investigated by means of stereoscopic particle image velocimetry. The results show that the dominant flow structures differ in shape and magnitude depending on the branch of the hysteresis loop. Hence, it can be concluded that the geometry could have an effect on the hysteresis behaviour of turbulent Taylor–Couette flow, but its occurrence is related to a genuine change in the flow dynamics.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Experimental investigation of torque hysteresis behaviour of Taylor–Couette Flow
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Experimental investigation of torque hysteresis behaviour of Taylor–Couette Flow
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Experimental investigation of torque hysteresis behaviour of Taylor–Couette Flow
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: M.Gul@tudelft.nl

References

Hide All
Adrian, R. J. & Westerweel, J. 2011 Particle Image Velocimetry. Cambridge University Press.
Andereck, C. D., Liu, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 155183.
Avila, M., Grimes, M., Lopez, J. M. & Marques, F. 2008 Global endwall effects on centrifugally stable flows. Phys. Fluids 20, 104104.
Bilson, M. & Bremhorst, K. 2007 Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid Mech. 579, 227.
Brauckmann, H. & Eckhardt, B. 2013a Direct numerical simulations of local and global torque in Taylor–Couette flow up to ℜ = 30. 000. J. Fluid Mech. 718, 398427.
Brauckmann, H. & Eckhardt, B. 2013b Intermittent boundary layers and torque maxima in Taylor–Couette flow. Phys. Rev. E 87, 033004.
Dong, S. 2007 Direct numerical simulation of turbulent Taylor–Couette flow. J. Fluid Mech. 587, 373393.
Dong, S. 2008 Turbulent flow between counter-rotating concentric cylinders: a direct numerical simulation study. J. Fluid Mech. 615, 371399.
van Gils, D. P. M., Huisman, S. G., Bruggert, G. W., Sun, C. & Lohse, D. 2011 Torque scaling in turbulent Taylor–Couette flow with co- and counterrotating cylinders. Phys. Rev. E 106, 024502.
Greidanus, A. J., Delfos, R., Tokgoz, S. & Westerweel, J. 2015 Turbulent Taylor–Couette flow over riblets: drag reduction and the effect of bulk fluid rotation. Exp. Fluids 56 (5), 107.
Greidanus, A. J., Delfos, R. & Westerweel, J. 2011 Drag reduction by surface treatment in turbulent Taylor–Couette flow. J. Phys. Conf. Ser. 318 (8), 082016.
Grossmann, S., Lohse, D. & Sun, C. 2016 High-Reynolds number Taylor–Couette turbulence. Annu. Rev. Fluid Mech. 48, 5380.
Dubrulle, B., Dauchot, O., Daviaud, F., Longaretti, P. Y., Richard, D. & Zahn, J. P. 2005 Stability and turbulent transport in Taylor–Couette flow from analysis of experimental data. Phys. Fluids 17, 095103.
Huisman, S. G., Scharnowski, S., Cierpka, C., Kähler, C. J., Lohse, D. & Sun, C. 2013 Logarithmic boundary layers in strong Taylor–Couette turbulence. Phys. Rev. Lett. 110, 264501.
Huisman, S. G., van der Veen, R. C. A., Sun, C. & Lohse, D. 2014 Multiple states in ultimate Taylor–Couette turbulence. Nat. Commun. 5, 3820.
Lathrop, D. P., Fineberg, J. & Swinney, H. L. 1992 Transition to shear-driven turbulence in Couette–Taylor flow. Phys. Rev. A 46 (6390), 1992.
Lewis, G. S. & Swinney, H. L. 1999 Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette–Taylor flow. Phys. Rev. E 59 (5), 54575467.
Lopez, J. M. 2016 Subcritical instability of finite circular Couette flow with stationary inner cylinder. J. Fluid Mech. 793, 589611.
Lopez, J. M. & Avila, M. 2017 Boundary-layer turbulence in experiments on quasi-Keplerian flows. J. Fluid Mech. 817, 2134.
Lumley, J. L. 1967 The structure of inhomogeneous turbulent flow. In Atmospheric Turbulence and Radio Wave Propagation (ed. Yaglom, A. M. & Tatarski, V. I.), pp. 166178. Nauka.
Martinez-Arias, B., Peıxınho, J., Crumeyrolle, O. & Mutabazı, I. 2014 Effect of the number of vortices on the torque scaling in Taylor–Couette flow. J. Fluid Mech. 748, 756767.
Ostilla-Mónico, R., van der Poel, E. P., Verzicco, R., Grossmann, S. & Lohse, D. 2014a Exploring the phase diagram of fully turbulent Taylor–Couette flow. J. Fluid Mech. 761, 126.
Ostilla-Mónico, R., van der Poel, E. P., Verzıcco, R., Grossmann, S. & Lohse, D. 2014b Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor–Couette flow. Phys. Fluids 26, 015114.
Paoletti, M. S. & Lathrop, D. P. 2011 Angular momentum transport in turbulent flow between independently rotating cylinders. Phys. Rev. Lett. 106, 024501.
Ravelet, F., Delfos, R. & Westerweel, J. 2010 Influence of global rotation and Reynolds number on the large-scale features of a turbulent Taylor–Couette flow. Phys. Fluids 22, 055103.
Sirovich, L. 1987 Turbulence and the dynamics of coherent structures. Part I. Coherent structures. Q. Appl. Maths. 45 (3), 561571.
Tokgoz, S., Elsinga, G. & Westerweel, J. 2011 Experimental investigation of torque scaling and coherent structures in turbulent Taylor–Couette flow. J. Phys. Conf. Ser. 318, 082018.
Tokgoz, S.2014. Coherent structures in Taylor–Couette flow. PhD thesis, Delft University of Technology.
van der Veen, R. C., Huisman, S. G., Dung, O. Y., Tang, H. L., Sun, C. & Lohse, D. 2016 Exploring the phase space of multiple states in highly turbulent Taylor–Couette flow. Phys. Rev. Fluids 1 (2), 024401.
Wendt, F. 1933 Turbulente Strömungen zwischen zwei rotierenden konaxialen Zylindern. Ing.-Arch. 4, 577595.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Experimental investigation of torque hysteresis behaviour of Taylor–Couette Flow

  • M. Gul (a1), G. E. Elsinga (a1) and J. Westerweel (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed