Skip to main content Accessibility help
×
Home

Exact coherent states and connections to turbulent dynamics in minimal channel flow

  • Jae Sung Park (a1) and Michael D. Graham (a1)

Abstract

Several new families of nonlinear three-dimensional travelling wave solutions to the Navier–Stokes equation, also known as exact coherent states, are computed for Newtonian plane Poiseuille flow. The symmetries and streak/vortex structures are reported and their possible connections to critical layer dynamics are examined. While some of the solutions clearly display fluctuations that are localized around the critical layer (the surface on which the streamwise velocity matches the wave speed of the solution), for others this connection is not as clear. Dynamical trajectories along unstable directions of the solutions are computed. Over certain ranges of Reynolds number, two solution families are shown to lie on the basin boundary between laminar and turbulent flow. Direct comparison of nonlinear travelling wave solutions to turbulent flow in the same channel is presented. The state-space dynamics of the turbulent flow is organized around one of the newly identified travelling wave families, and in particular the lower-branch solutions of this family are closely approached during transient excursions away from the dominant behaviour. These observations provide a firm dynamical-systems foundation for prior observations that minimal channel turbulence displays time intervals of ‘active’ turbulence punctuated by brief periods of ‘hibernation’ (see, e.g., Xi & Graham, Phys. Rev. Lett., vol. 104, 2010, 218301). The hibernating intervals are approaches to lower-branch nonlinear travelling waves. Representing these solutions on a Prandtl–von Kármán plot illustrates how their bulk flow properties are related to those of Newtonian turbulence as well as the universal asymptotic state called maximum drag reduction (MDR) found in viscoelastic turbulent flow. In particular, the lower- and upper-branch solutions of the family around which the minimal channel dynamics is organized appear to approach the MDR asymptote and the classical Newtonian result respectively, in terms of both bulk velocity and mean velocity profile.

Copyright

Corresponding author

Email address for correspondence: mdgraham@wisc.edu

References

Hide All
Agostini, L. & Leschziner, M. A. 2014 On the influence of outer large-scale structures on near-wall turbulence in channel flow. Phys. Fluids 26, 075107.
Avila, M., Mellibovsky, F., Roland, N. & Hof, B. 2013 Streamwise-localized solutions at the onset of turbulence in pipe flow. Phys. Rev. Lett. 110, 224502.
Bandyopadhyay, P. R 2006 Stokes mechanism of drag reduction. Trans. ASME J. Appl. Mech. 73 (3), 483.
Barkley, D. & Tuckerman, L. S. 2005 Computational study of turbulent laminar patterns in Couette flow. Phys. Rev. Lett. 94, 014502.
Blackburn, H. M., Hall, P. & Sherwin, S. J. 2013 Lower branch equilibria in Couette flow: the emergence of canonical states for arbitrary shear flows. J. Fluid Mech. 726, R2.
Brand, E. & Gibson, J. F. 2014 A doubly-localized equilibrium solution of plane Couette flow. J. Fluid Mech. 750, R3.
Carlson, D. R., Widnall, S. E. & Peeters, M. F. 1982 A flow-visualization study of transition in plane Poiseuille flow. J. Fluid Mech. 121, 487505.
Chandler, G. J. & Kerswell, R. R. 2013 Invariant recurrent solutions embedded in a turbulent two-dimensional Kolmogorov flow. J. Fluid Mech. 722, 554595.
Chantry, M., Willis, A. P. & Kerswell, R. R. 2014 Genesis of streamwise-localized solutions from globally periodic traveling waves in pipe flow. Phys. Rev. Lett. 112, 164501.
Clever, R. M. & Busse, F. H. 1997 Tertiary and quaternary solutions for plane Couette flow. J. Fluid Mech. 344, 137153.
Cvitanović, P. & Gibson, J. F. 2010 Geometry of the turbulence in wall-bounded shear flows: periodic orbits. Phys. Scr. T 2010 (142), 014007.
Deguchi, K. & Hall, P. 2014 Canonical exact coherent structures embedded in high Reynolds number flows. Phil. Trans. R. Soc. Lond. A 372, 20130352.
Deguchi, K., Hall, P. & Walton, A. 2013 The emergence of localized vortex–wave interaction states in plane Couette flow. J. Fluid Mech. 721, 5885.
Deguchi, K. & Nagata, M. 2010 Traveling hairpin-shaped fluid vortices in plane Couette flow. Phys. Rev. E 82, 056325.
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
Dubief, Y., White, C. M., Shaqfeh, E. S. G. & Terrapon, V. E.2011 Polymer maximum drag reduction: a unique transitional state. Center for Turbulent Research Annual Research Briefs 2010, pp. 47–56.
Duguet, Y., Schlatter, P., Henningson, D. S. & Eckhardt, B. 2012 Self-sustained localized structures in a boundary-layer flow. Phys. Rev. Lett. 108, 044501.
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.
Faisst, H. & Eckhardt, B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91 (22), 224502.
Gibson, J. F.2012 Channelflow: a spectral Navier–Stokes simulator in C++. Tech. Rep. University of New Hampshire, Channelflow.org.
Gibson, J. F. & Brand, E. 2014 Spanwise-localized solutions of planar shear flows. J. Fluid Mech. 745, 2561.
Gibson, J. F., Halcrow, J. & Cvitanovic, P. 2008 Visualizing the geometry of state space in plane Couette flow. J. Fluid Mech. 611, 107130.
Gibson, J. F., Halcrow, J. & Cvitanovic, P. 2009 Equilibrium and travelling-wave solutions of plane Couette flow. J. Fluid Mech. 638, 243266.
Graham, M. D. 2014 Drag reduction and the dynamics of turbulence in simple and complex fluids. Phys. Fluids 26, 101301.
Guckenheimer, J. & Holmes, P. 1983 Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields. Springer.
Halcrow, J., Gibson, J. F., Cvitanovic, P. & Viswanath, D. 2009 Heteroclinic connections in plane Couette flow. J. Fluid Mech. 621, 365376.
Hall, P. & Sherwin, S. 2010 Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech. 661, 178205.
Hof, B., van Doorne, C. W. H., Westerweel, J., Nieuwstadt, F. T. M., Faisst, H., Eckhardt, B., Wedin, H., Kerswell, R. R. & Waleffe, F. 2004 Experimental observation of nonlinear traveling waves in turbulent pipe flow. Science 305 (5690), 15941598.
Itano, T. & Generalis, S. C. 2009 Hairpin vortex solution in planar Couette flow: a tapestry of knotted vortices. Phys. Rev. Lett. 102, 114501.
Itano, T. & Toh, S. 2001 The dynamics of bursting process in wall turbulence. J. Phys. Soc. Japan 70 (3), 703716.
Jimenez, J. & Moin, P. 1991 The minimal flow unit in near-wall turbulence. J. Fluid Mech. 225, 213240.
Kawahara, G. & Kida, S. 2001 Periodic motion embedded in plane Couette turbulence: regeneration cycle and burst. J. Fluid Mech. 449, 291.
Kawahara, G., Uhlmann, M. & van Veen, L. 2012 The significance of simple invariant solutions in turbulent flows. Annu. Rev. Fluid Mech. 44, 203225.
Kerswell, R. R., Obrist, D. & Schmid, P. J. 2003 On smoothed turbulent shear flows: bounds, numerics and stress-reducing additives. Phys. Fluids 15 (1), 7883.
Kerswell, R. R. & Tutty, O. R. 2007 Recurrence of travelling waves in transitional pipe flow. J. Fluid Mech. 584, 69102.
Lemoult, G., Aider, J.-L. & Wesfreid, J. E. 2013 Turbulent spots in a channel: large-scale flow and self-sustainability. J. Fluid Mech. 731, R1.
Li, W. & Graham, M. D. 2007 Polymer induced drag reduction in exact coherent structures of plane Poiseuille flow. Phys. Fluids 19 (8), 083101.
Li, W., Xi, L. & Graham, M. D. 2006 Nonlinear travelling waves as a framework for understanding turbulent drag reduction. J. Fluid Mech. 565, 353362.
de Lozar, A., Mellibovsky, F., Avila, M. & Hof, B. 2012 Edge state in pipe flow experiments. Phys. Rev. Lett. 108, 214502.
Maslowe, S. A. 1986 Critical layers in shear flows. Annu. Rev. Fluid Mech. 18 (1), 405432.
Mellibovsky, F. & Eckhardt, B. 2011 Takens–Bogdanov bifurcation of travelling-wave solutions in pipe flow. J. Fluid Mech. 670, 96129.
Nagata, M. 1990 3-dimensional finite-amplitude solutions in plane Couette-flow – bifurcation from infinity. J. Fluid Mech. 217, 519527.
Nagata, M. 1997 Three-dimensional traveling-wave solutions in plane Couette flow. Phys. Rev. E 55, 20232025.
Nagata, M. & Deguchi, K. 2013 Mirror-symmetric exact coherent states in plane Poiseuille flow. J. Fluid Mech. 735, R4.
Pringle, C. C. T., Duguet, Y. & Kerswell, R. R. 2009 Highly symmetric travelling waves in pipe flow. Phil. Trans. R. Soc. Lond. A 367 (1888), 457472.
Schneider, T. M., Eckhardt, B. & Yorke, J. A. 2007 Turbulence transition and the edge of chaos in pipe flow. Phys. Rev. Lett. 99 (3), 034502.
Schneider, T. M., Gibson, J. F. & Burke, J. 2010 Snakes and ladders: localized solutions of plane Couette flow. Phys. Rev. Lett. 104 (10), 104501.
Skufca, J. D., Yorke, J. A. & Eckhardt, B. 2006 Edge of chaos in a parallel shear flow. Phys. Rev. Lett. 96 (17), 4.
Smith, C. R. & Metzler, S. P. 1983 The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 2754.
Tillmark, N. & Alfredsson, P. H. 1992 Experiments on transition in plane Couette flow. J. Fluid Mech. 235, 89102.
Toh, S. & Itano, T. 2003 A periodic-like solution in channel flow. J. Fluid Mech. 481, 6776.
Virk, P. S. 1975 Drag reduction fundamentals. AIChE J. 21 (4), 625656.
Viswanath, D. 2007 Recurrent motions within plane Couette turbulence. J. Fluid Mech. 580, 339358.
Viswanath, D. 2009 The critical layer in pipe flow at high Reynolds number. Phil. Trans. R. Soc. Lond. A 367 (1888), 561576.
Viswanath, D. & Cvitanovic, P. 2009 Stable manifolds and the transition to turbulence in pipe flow. J. Fluid Mech. 627, 215233.
Waleffe, F. 1997 On a self-sustaining process in shear flows. Phys. Fluids 9 (4), 883900.
Waleffe, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81 (19), 41404143.
Waleffe, F. 2001 Exact coherent structures in channel flow. J. Fluid Mech. 435, 93102.
Waleffe, F. 2003 Homotopy of exact coherent structures in plane shear flows. Phys. Fluids 15, 1517.
Wang, J., Gibson, J. & Waleffe, F. 2007 Lower branch coherent states in shear flows: transition and control. Phys. Rev. Lett. 98 (20), 204501.
Wang, S.-N., Graham, M. D., Hahn, F. J. & Xi, L. 2014 Time-series and extended Karhunen–Loève analysis of turbulent drag reduction in polymer solutions. AIChE J. 60 (4), 14601475.
Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.
Whalley, R. D., Park, J. S., Kushwaha, A., Dennis, D. J. C., Graham, M. D. & Poole, R. J. 2014 On the connection between Maximum Drag Reduction and Newtonian fluid flow. Bull. Am. Phys. Soc. 59 (20).
White, C. M. & Mungal, M. G. 2008 Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech. 40, 235256.
Xi, L. & Graham, M. D. 2010a Active and hibernating turbulence in minimal channel flow of Newtonian and polymeric fluids. Phys. Rev. Lett. 104 (21), 218301.
Xi, L. & Graham, M. D. 2010b Turbulent drag reduction and multistage transitions in viscoelastic minimal flow units. J. Fluid Mech. 647, 421.
Xi, L. & Graham, M. D. 2012a Dynamics on the laminar–turbulent boundary and the origin of the maximum drag reduction asymptote. Phys. Rev. Lett. 108, 028301.
Xi, L. & Graham, M. D. 2012b Intermittent dynamics of turbulence hibernation in Newtonian and viscoelastic minimal channel flows. J. Fluid Mech. 693, 433472.
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Park and Graham supplementary movie captions
Captions

 Word (14 KB)
14 KB
VIDEO
Movies

Park and Graham supplementary movie
Movie 1: P1 lower branch solution

 Video (4.4 MB)
4.4 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 10: P2 solution

 Video (8.8 MB)
8.8 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 11: P3 lower branch solution

 Video (7.6 MB)
7.6 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 12: P3 upper branch solution

 Video (20.8 MB)
20.8 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 13: P4 lower branch solution

 Video (4.6 MB)
4.6 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 14: P4 upper branch solution

 Video (8.4 MB)
8.4 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 15: P4 subharmonic branch solution

 Video (9.7 MB)
9.7 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 16: P5 lower branch solution

 Video (4.5 MB)
4.5 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 17: P5 upper branch solution

 Video (5.3 MB)
5.3 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 2: P1 upper branch solution

 Video (6.7 MB)
6.7 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 3: P3 lower branch solution

 Video (18.8 MB)
18.8 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 4: P3 upper branch solution

 Video (15.2 MB)
15.2 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 5: P4 lower branch solution

 Video (15.4 MB)
15.4 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 6: P4 upper branch solution

 Video (16.1 MB)
16.1 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 7: P4 subharmonic branch solution

 Video (4.5 MB)
4.5 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 8: P1 lower branch solution

 Video (5.6 MB)
5.6 MB
VIDEO
Movies

Park and Graham supplementary movie
Movie 9: P1 upper branch solution

 Video (10.6 MB)
10.6 MB

Exact coherent states and connections to turbulent dynamics in minimal channel flow

  • Jae Sung Park (a1) and Michael D. Graham (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.