Abbas, M., Magaud, P., Gao, Y. & Geoffroy, S.
2014
Migration of finite sized particles in a laminar square channel flow from low to high Reynolds numbers. Phys. Fluids
26, 136–157.10.1063/1.4902952
Choi, Y. S., Seo, K. W. & Lee, S. J.
2011
Lateral and cross-lateral focusing of spherical particles in a square microchannel. Lab on a Chip
11, 460–465.
Chun, B. & Ladd, A. J. C.
2006
Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys. Fluids
18, 031704.
D’Avino, G., Greco, F. & Maffettone, P. L.
2017
Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices. Annu. Rev. Fluid Mech.
49, 341–360.10.1146/annurev-fluid-010816-060150
D’Avino, G. & Maffettone, P. L.
2015
Particle dynamics in viscoelastic liquids. J. Non-Newtonian Fluid Mech.
215, 80–104.
D’Avino, G., Romeo, G., Villone, M. M., Greco, F., Netti, P. A. & Maffettone, P. L.
2012
Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. Lab on a Chip
12, 1638–1645.
Del Giudice, F., D’Avino, G., Greco, F., Netti, P. A. & Maffettone, P.
2015
Effect of fluid rheology on particle migration in a square-shaped microchannel. Microfluid. Nanofluid.
19 (1), 1–10.
Di, L., Lu, X. & Xuan, X.
2016
Viscoelastic separation of particles by size in straight rectangular microchannels: a parametric study for a refined understanding. Analyt. Chem.
88, 12303–12309.
Di Carlo, D., Irimia, D., Tompkins, R. G. & Toner, M.
2007
Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl Acad. Sci. USA
104, 18892–18897.
Glowinski, R., Pan, T.-W., Hesla, T. I. & Joseph, D. D.
1999
A distributed Lagrange multiplier/fictitious domain method for particulate flows. Intl J. Multiphase Flow
25, 755–794.10.1016/S0301-9322(98)00048-2
Ho, B. P. & Leal, L. G.
1974
Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech.
65, 365–400.
Ho, B. P. & Leal, L. G.
1976
Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid Mech.
76, 783–799.
Hu, H. H., Patankar, N. A. & Zhu, M. Y.
2001
Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian–Eulerian technique. J. Comput. Phys.
169 (2), 427–462.10.1006/jcph.2000.6592
Huang, P. Y., Feng, J., Hu, H. H. & Joseph, D. D.
1997
Direct simulation of the motion of solid particles in Couette and Poiseuille flows of viscoelastic fluids. J. Fluid Mech.
343, 73–94.10.1017/S0022112097005764
Karnis, A. & Mason, S. G.
1966
Particle motions in sheared suspensions. XIX. Viscoelastic media. Trans. Soc. Rheol.
10, 571–592.10.1122/1.549066
Kazuma, M., Tomoaki, I. & Masako, S. S.
2014
Inertial migration of neutrally buoyant spheres in a pressure-driven flow through square channels. J. Fluid Mech.
749, 320–330.
Kim, B. & Kim, J. M.
2016
Elasto-inertial particle focusing under the viscoelastic flow of DNA solution in a square channel. Biomicrofluidics
10, 024111.
Kim, J. Y., Ahn, S. W., Lee, S. S. & Kim, J. M.
2012
Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow. Lab on a Chip
12, 2807–2814.
van Leer, B.
1979
Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys.
32, 101–136.10.1016/0021-9991(79)90145-1
Leshansky, A. M., Bransky, A., Korin, N. & Dinnar, U.
2007
Tunable nonlinear viscoelastic focusing in a microfluidic device. Phys. Rev. Lett.
98, 234501.
Li, G., McKinley, G. H. & Ardekani, A. M.
2015
Dynamics of particle migration in channel flow of viscoelastic fluids. J. Fluid Mech.
785, 486–505.
Lim, E. J., Ober, T. J., Edd, J. F., Desai, S. P., Neal, D., Bong, K. W., Doyle, P. S., McKinley, G. H. & Toner, M.
2014
Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat. Commun.
5, 4120.
Liu, C., Hu, G., Jiang, X. & Sun, J.
2015a
Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers. Lab on a Chip
15, 1168–1177.
Liu, C., Xue, C., Chen, X., Shan, L., Tian, Y. & Hu, G.
2015b
Size-based separation of particles and cells utilizing viscoelastic effects in straight microchannels. Analyt. Chem.
87, 6041–6048.10.1021/acs.analchem.5b00516
Lu, X., Liu, C., Hu, G. & Xuan, X.
2017
Particle manipulations in non-Newtonian microfluidics: a review. J. Colloid Interface Sci.
500, 182–201.
Matas, J. P., Morris, J. F. & Guazzelli, E.
2004
Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech.
515, 171–195.10.1017/S0022112004000254
Matas, J. P., Morris, J. F. & Guazzelli, E.
2009
Lateral force on a rigid sphere in large-inertia laminar pipe flow. J. Fluid Mech.
621, 59–67.10.1017/S0022112008004977
Raffiee, A. H., Dabiri, S. & Ardekani, A. M.
2017
Elasto-inertial migration of deformable capsules in a microchannel. Biomicrofluidics
11 (6), 064113.
Segre, G. & Silberberg, A.
1961
Radial particle displacements in Poiseuille flow of suspensions. Nature
189, 209–210.
Seo, K. W., Kang, Y. J. & Lee, S. J.
2014
Lateral migration and focusing of microspheres in a microchannel flow of viscoelastic fluids. Phys. Fluids
26, 063301.10.1063/1.4882265
Shao, X., Yu, Z. & Sun, B.
2008
Inertial migration of spherical particles in circular Poiseuille flow at moderately high Reynolds numbers. Phys. Fluids
20, 103307.10.1063/1.3005427
Trofa, M., Vocciante, M., D’Avino, G., Hulsen, M. A., Greco, F. & Maffettone, P. L.
2015
Numerical simulations of the competition between the effects of inertia and viscoelasticity on particle migration in Poiseuille flow. Comput. Fluids
107, 214–223.
Villone, M. M., D’Avino, G., Hulsen, M. A., Greco, F. & Maffettone, P. L.
2011
Simulations of viscoelasticity-induced focusing of particles in pressure-driven micro-slit flow. J. Non-Newtonian Fluid Mech.
166, 1396–1405.10.1016/j.jnnfm.2011.09.003
Villone, M. M., D’Avino, G., Hulsen, M. A., Greco, F. & Maffettone, P. L.
2013
Particle motion in square channel flow of a viscoelastic liquid: migration versus secondary flows. J. Non-Newtonian Fluid Mech.
195, 1–8.10.1016/j.jnnfm.2012.12.006
Wang, P., Yu, Z. & Lin, J.
2018
Numerical simulations of particle migration in rectangular channel flow of Giesekus viscoelastic fluids. J. Non-Newtonian Fluid Mech.
262, 142–148.10.1016/j.jnnfm.2018.04.011
Xiang, N., Dai, Q. & Ni, Z.
2016
Multi-train elasto-inertial particle focusing in straight microfluidic channels. Appl. Phys. Lett.
109, 1–16.
Yang, S., Kim, J. Y., Lee, S. J., Lee, S. S. & Kim, J. M.
2011
Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab on a Chip
11, 266–273.
Yang, S., Lee, S. S., Ahn, S. W., Kang, K., Shim, W., Lee, G., Hyun, K. & Ju, M. K.
2012
Deformability-selective particle entrainment and separation in a rectangular microchannel using medium viscoelasticity. Soft Matt.
8, 5011–5019.
Yu, Z., Phan-Thien, N., Fan, Y. & Tanner, R. I.
2002
Viscoelastic mobility problem of a system of particles. J. Non-Newtonian Fluid Mech.
104, 87–124.
Yu, Z. & Shao, X.
2007
A direct-forcing fictitious domain method for particulate flows. J. Comput. Phys.
227, 292–314.
Yu, Z. & Wachs, A.
2007
A fictitious domain method for dynamic simulation of particle sedimentation in Bingham fluids. J. Non-Newtonian Fluid Mech.
145, 78–91.
Yu, Z., Wachs, A. & Peysson, Y.
2006
Numerical simulation of particle sedimentation in shear-thinning fluids with a fictitious domain method. J. Non-Newtonian Fluid Mech.
136, 126–139.
Yuan, D., Zhao, Q., Yan, S., Tang, S.-Y., Alici, G., Zhang, J. & Li, W.
2018
Recent progress of particle migration in viscoelastic fluids. Lab on a Chip
18 (4), 551–567.
Zhou, J. & Papautsky, I.
2013
Fundamentals of inertial focusing in microchannels. Lab on a Chip
13, 1121–1132.