Skip to main content Accessibility help

Equilibrium positions of the elasto-inertial particle migration in rectangular channel flow of Oldroyd-B viscoelastic fluids

  • Zhaosheng Yu (a1), Peng Wang (a1), Jianzhong Lin (a1) and Howard H. Hu (a2)


In this paper, the lateral migration of a neutrally buoyant spherical particle in the pressure-driven rectangular channel flow of an Oldroyd-B fluid is numerically investigated with a fictitious domain method. The aspect ratio of the channel cross-section considered is 1 and 2, respectively. The particle lateral motion trajectories are shown for the bulk Reynolds number ranging from 1 to 100, the ratio of the solvent viscosity to the total viscosity being 0.5, and a Weissenberg number up to 1.5. Our results indicate that the lateral equilibrium positions located on the cross-section midline, diagonal line, corner and channel centreline occur successively as the fluid elasticity is increased, for particle migration in square channel flow with finite fluid inertia. The transition of the equilibrium position depends strongly on the elasticity number (the ratio of the Weissenberg number to the Reynolds number) and weakly on the Reynolds number. The diagonal-line equilibrium position occurs at an elasticity number ranging from roughly 0.001 to 0.02, and can coexist with the midline and corner equilibrium positions. When the fluid inertia is negligibly small, particles migrate towards the channel centreline, or the closest corner, depending on their initial positions and the Weissenberg number, and the corner attractive area first increases and then decreases as the Weissenberg number increases. For particle migration in a rectangular channel with an aspect ratio of 2, the transition of the equilibrium position from the midline, ‘diagonal line’ (the line where two lateral shear rates are equal to each other), off-centre long midline and channel centreline takes place as the Weissenberg number increases at moderate Reynolds numbers. An off-centre equilibrium position on the long midline is observed for a large blockage ratio of 0.3 (i.e. the ratio of the particle diameter to the channel height is 0.3) at a low Reynolds number. This off-centre migration is driven by shear forces, unlike the elasticity-induced rapid inward migration, which is driven by the normal force (pressure or first normal stress difference).


Corresponding author

Email addresses for correspondence:,


Hide All
Abbas, M., Magaud, P., Gao, Y. & Geoffroy, S. 2014 Migration of finite sized particles in a laminar square channel flow from low to high Reynolds numbers. Phys. Fluids 26, 136157.10.1063/1.4902952
Choi, Y. S., Seo, K. W. & Lee, S. J. 2011 Lateral and cross-lateral focusing of spherical particles in a square microchannel. Lab on a Chip 11, 460465.
Chun, B. & Ladd, A. J. C. 2006 Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys. Fluids 18, 031704.
D’Avino, G., Greco, F. & Maffettone, P. L. 2017 Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices. Annu. Rev. Fluid Mech. 49, 341360.10.1146/annurev-fluid-010816-060150
D’Avino, G. & Maffettone, P. L. 2015 Particle dynamics in viscoelastic liquids. J. Non-Newtonian Fluid Mech. 215, 80104.
D’Avino, G., Romeo, G., Villone, M. M., Greco, F., Netti, P. A. & Maffettone, P. L. 2012 Single line particle focusing induced by viscoelasticity of the suspending liquid: theory, experiments and simulations to design a micropipe flow-focuser. Lab on a Chip 12, 16381645.
Del Giudice, F., D’Avino, G., Greco, F., Netti, P. A. & Maffettone, P. 2015 Effect of fluid rheology on particle migration in a square-shaped microchannel. Microfluid. Nanofluid. 19 (1), 110.
Di, L., Lu, X. & Xuan, X. 2016 Viscoelastic separation of particles by size in straight rectangular microchannels: a parametric study for a refined understanding. Analyt. Chem. 88, 1230312309.
Di Carlo, D., Irimia, D., Tompkins, R. G. & Toner, M. 2007 Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl Acad. Sci. USA 104, 1889218897.
Glowinski, R., Pan, T.-W., Hesla, T. I. & Joseph, D. D. 1999 A distributed Lagrange multiplier/fictitious domain method for particulate flows. Intl J. Multiphase Flow 25, 755794.10.1016/S0301-9322(98)00048-2
Ho, B. P. & Leal, L. G. 1974 Inertial migration of rigid spheres in two-dimensional unidirectional flows. J. Fluid Mech. 65, 365400.
Ho, B. P. & Leal, L. G. 1976 Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid Mech. 76, 783799.
Hu, H. H., Patankar, N. A. & Zhu, M. Y. 2001 Direct numerical simulations of fluid–solid systems using the arbitrary Lagrangian–Eulerian technique. J. Comput. Phys. 169 (2), 427462.10.1006/jcph.2000.6592
Huang, P. Y., Feng, J., Hu, H. H. & Joseph, D. D. 1997 Direct simulation of the motion of solid particles in Couette and Poiseuille flows of viscoelastic fluids. J. Fluid Mech. 343, 7394.10.1017/S0022112097005764
Karnis, A. & Mason, S. G. 1966 Particle motions in sheared suspensions. XIX. Viscoelastic media. Trans. Soc. Rheol. 10, 571592.10.1122/1.549066
Kazuma, M., Tomoaki, I. & Masako, S. S. 2014 Inertial migration of neutrally buoyant spheres in a pressure-driven flow through square channels. J. Fluid Mech. 749, 320330.
Kim, B. & Kim, J. M. 2016 Elasto-inertial particle focusing under the viscoelastic flow of DNA solution in a square channel. Biomicrofluidics 10, 024111.
Kim, J. Y., Ahn, S. W., Lee, S. S. & Kim, J. M. 2012 Lateral migration and focusing of colloidal particles and DNA molecules under viscoelastic flow. Lab on a Chip 12, 28072814.
van Leer, B. 1979 Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32, 101136.10.1016/0021-9991(79)90145-1
Leshansky, A. M., Bransky, A., Korin, N. & Dinnar, U. 2007 Tunable nonlinear viscoelastic focusing in a microfluidic device. Phys. Rev. Lett. 98, 234501.
Li, G., McKinley, G. H. & Ardekani, A. M. 2015 Dynamics of particle migration in channel flow of viscoelastic fluids. J. Fluid Mech. 785, 486505.
Lim, E. J., Ober, T. J., Edd, J. F., Desai, S. P., Neal, D., Bong, K. W., Doyle, P. S., McKinley, G. H. & Toner, M. 2014 Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat. Commun. 5, 4120.
Liu, C., Hu, G., Jiang, X. & Sun, J. 2015a Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers. Lab on a Chip 15, 11681177.
Liu, C., Xue, C., Chen, X., Shan, L., Tian, Y. & Hu, G. 2015b Size-based separation of particles and cells utilizing viscoelastic effects in straight microchannels. Analyt. Chem. 87, 60416048.10.1021/acs.analchem.5b00516
Lu, X., Liu, C., Hu, G. & Xuan, X. 2017 Particle manipulations in non-Newtonian microfluidics: a review. J. Colloid Interface Sci. 500, 182201.
Matas, J. P., Morris, J. F. & Guazzelli, E. 2004 Inertial migration of rigid spherical particles in Poiseuille flow. J. Fluid Mech. 515, 171195.10.1017/S0022112004000254
Matas, J. P., Morris, J. F. & Guazzelli, E. 2009 Lateral force on a rigid sphere in large-inertia laminar pipe flow. J. Fluid Mech. 621, 5967.10.1017/S0022112008004977
Raffiee, A. H., Dabiri, S. & Ardekani, A. M. 2017 Elasto-inertial migration of deformable capsules in a microchannel. Biomicrofluidics 11 (6), 064113.
Segre, G. & Silberberg, A. 1961 Radial particle displacements in Poiseuille flow of suspensions. Nature 189, 209210.
Seo, K. W., Kang, Y. J. & Lee, S. J. 2014 Lateral migration and focusing of microspheres in a microchannel flow of viscoelastic fluids. Phys. Fluids 26, 063301.10.1063/1.4882265
Shao, X., Yu, Z. & Sun, B. 2008 Inertial migration of spherical particles in circular Poiseuille flow at moderately high Reynolds numbers. Phys. Fluids 20, 103307.10.1063/1.3005427
Trofa, M., Vocciante, M., D’Avino, G., Hulsen, M. A., Greco, F. & Maffettone, P. L. 2015 Numerical simulations of the competition between the effects of inertia and viscoelasticity on particle migration in Poiseuille flow. Comput. Fluids 107, 214223.
Villone, M. M., D’Avino, G., Hulsen, M. A., Greco, F. & Maffettone, P. L. 2011 Simulations of viscoelasticity-induced focusing of particles in pressure-driven micro-slit flow. J. Non-Newtonian Fluid Mech. 166, 13961405.10.1016/j.jnnfm.2011.09.003
Villone, M. M., D’Avino, G., Hulsen, M. A., Greco, F. & Maffettone, P. L. 2013 Particle motion in square channel flow of a viscoelastic liquid: migration versus secondary flows. J. Non-Newtonian Fluid Mech. 195, 18.10.1016/j.jnnfm.2012.12.006
Wang, P., Yu, Z. & Lin, J. 2018 Numerical simulations of particle migration in rectangular channel flow of Giesekus viscoelastic fluids. J. Non-Newtonian Fluid Mech. 262, 142148.10.1016/j.jnnfm.2018.04.011
Xiang, N., Dai, Q. & Ni, Z. 2016 Multi-train elasto-inertial particle focusing in straight microfluidic channels. Appl. Phys. Lett. 109, 116.
Yang, S., Kim, J. Y., Lee, S. J., Lee, S. S. & Kim, J. M. 2011 Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab on a Chip 11, 266273.
Yang, S., Lee, S. S., Ahn, S. W., Kang, K., Shim, W., Lee, G., Hyun, K. & Ju, M. K. 2012 Deformability-selective particle entrainment and separation in a rectangular microchannel using medium viscoelasticity. Soft Matt. 8, 50115019.
Yu, Z., Phan-Thien, N., Fan, Y. & Tanner, R. I. 2002 Viscoelastic mobility problem of a system of particles. J. Non-Newtonian Fluid Mech. 104, 87124.
Yu, Z. & Shao, X. 2007 A direct-forcing fictitious domain method for particulate flows. J. Comput. Phys. 227, 292314.
Yu, Z. & Wachs, A. 2007 A fictitious domain method for dynamic simulation of particle sedimentation in Bingham fluids. J. Non-Newtonian Fluid Mech. 145, 7891.
Yu, Z., Wachs, A. & Peysson, Y. 2006 Numerical simulation of particle sedimentation in shear-thinning fluids with a fictitious domain method. J. Non-Newtonian Fluid Mech. 136, 126139.
Yuan, D., Zhao, Q., Yan, S., Tang, S.-Y., Alici, G., Zhang, J. & Li, W. 2018 Recent progress of particle migration in viscoelastic fluids. Lab on a Chip 18 (4), 551567.
Zhou, J. & Papautsky, I. 2013 Fundamentals of inertial focusing in microchannels. Lab on a Chip 13, 11211132.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed