Skip to main content Accessibility help
×
Home

Electrohydrodynamics of viscous drops in strong electric fields: numerical simulations

  • Debasish Das (a1) and David Saintillan (a1)

Abstract

Weakly conducting dielectric liquid drops suspended in another dielectric liquid and subject to an applied uniform electric field exhibit a wide range of dynamical behaviours contingent on field strength and material properties. These phenomena are best described by the Melcher–Taylor leaky dielectric model, which hypothesizes charge accumulation on the drop–fluid interface and prescribes a balance between charge relaxation, the jump in ohmic currents from the bulk and charge convection by the interfacial fluid flow. Most previous numerical simulations based on this model have either neglected interfacial charge convection or restricted themselves to axisymmetric drops. In this work, we develop a three-dimensional boundary element method for the complete leaky dielectric model to systematically study the deformation and dynamics of liquid drops in electric fields. The inclusion of charge convection in our simulations permits us to investigate drops in the Quincke regime, in which experiments have demonstrated a symmetry-breaking bifurcation leading to steady electrorotation. Our simulation results show excellent agreement with existing experimental data and small-deformation theories.

Copyright

Corresponding author

Email address for correspondence: dstn@ucsd.edu

Footnotes

Hide All

Present address: Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK.

Footnotes

References

Hide All
Ajayi, O. O. 1978 A note on Taylor’s electrohydrodynamic theory. Proc. R. Soc. Lond. A 364, 499507.
Allan, R. S. & Mason, S. G. 1962 Particle behaviour in shear and electric fields. I. Deformation and burst of fluid drops. Proc. R. Soc. Lond. A 267, 4561.
Bandopadhyay, A., Mandal, S., Kishore, N. K. & Chakraborty, S. 2016 Uniform electric-field-induced lateral migration of a sedimenting drop. J. Fluid Mech. 792, 553589.
Basaran, O. A., Gao, H. & Bhat, P. P. 2013 Nonstandard inkjets. Annu. Rev. Fluid Mech. 45, 85113.
Baygents, J. C., Rivette, N. J. & Stone, H. A. 1998 Electrohydrodynamic deformation and interaction of drop pairs. J. Fluid Mech. 368, 359375.
Bjorklund, E. 2009 The level-set method applied to droplet dynamics in the presence of an electric field. Comput. Fluids 38, 358369.
Blanchard, D. C. 1963 The electrification of the atmosphere by particles from bubbles in the sea. Prog. Oceanogr. 1, 73202.
Brazier-Smith, P. R. 1971 Stability and shape of isolated and pairs of water drops in an electric field. Phys. Fluids 14, 16.
Brazier-Smith, P. R., Jennings, S. G. & Latham, J 1971 An investigation of the behaviour of drops and drop-pairs subjected to strong electrical forces. Proc. R. Soc. Lond. A 325, 363376.
Castellanos, A. 2014 Electrohydrodynamics. Springer.
Das, D. & Saintillan, D. 2013 Electrohydrodynamic interaction of spherical particles under Quincke rotation. Phys. Rev. E 87, 043014.
Das, D. & Saintillan, D. 2017 A nonlinear small-deformation theory for transient droplet electrohydrodynamics. J. Fluid Mech. 810, 225253.
Dommersnes, P., Mikkelsen, A. & Fossum, J. 2016 Electro-hydrodynamic propulsion of counter-rotating pickering drops. J. Eur. Phys. J. Spec. Top. 225, 699706.
Dubash, N. & Mestel, A. J. 2007a Behaviour of a conducting drop in a highly viscous fluid subject to an electric field. J. Fluid Mech. 581, 469493.
Dubash, N. & Mestel, A. J. 2007b Breakup behavior of a conducting drop suspended in a viscous fluid subject to an electric field. Phys. Fluids 19, 072101.
Eow, J. S. & Ghadiri, M. 2002 Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology. Chem. Engng J. 85, 357368.
Esmaeeli, A. & Sharifi, P. 2011 Transient electrohydrodynamics of a liquid drop. Phys. Rev. E 84, 036308.
Feng, J. Q. 1999 Electrohydrodynamic behaviour of a drop subjected to a steady uniform electric field at finite electric Reynolds number. Proc. R. Soc. Lond. A 455, 22452269.
Feng, J. Q. 2002 A 2D electrohydrodynamic model for electrorotation of fluid drops. J. Colloid Interface Sci. 246, 112121.
Feng, J. Q. & Scott, T. C. 1996 A computational analysis of electrohydrodynamics of a leaky dielectric drop in an electric field. J. Fluid Mech. 311, 289326.
Ha, J.-W. & Yang, S.-M. 2000a Deformation and breakup of Newtonian and non-Newtonian conducting drops in an electric field. J. Fluid Mech. 405, 131156.
Ha, J.-W. & Yang, S.-M. 2000b Electrohydrodynamics and electrorotation of a drop with fluid less conductive than that of the ambient fluid. Phys. Fluids 12, 764772.
Ha, J.-W. & Yang, S.-M. 2000c Rheological responses of oil-in-oil emulsions in an electric field. J. Rheol. 44, 235256.
Harris, F. E. & O’Konski, C. T. 1957 Dielectric properties of aqueous ionic solutions at microwave frequencies. J. Phys. Chem. 61, 310319.
Haywood, R. J., Renksizbulut, M. & Raithby, G. D. 1991 Transient deformation of freely-suspended liquid droplets in electrostatic fields. AIChE J. 37, 13051317.
He, H., Salipante, P. F. & Vlahovska, P. M. 2013 Electrorotation of a viscous droplet in a uniform direct current electric field. Phys. Fluids 25, 032106.
Hirata, T., Kikuchi, T., Tsukada, T. & Hozawa, M. 2000 Finite element analysis of electrohydrodynamic time-dependent deformation of dielectric drop under uniform DC electric field. J. Chem. Engng Japan 33, 160167.
Hu, W.-F., Lai, M.-C. & Young, Y.-N. 2015 A hybrid immersed boundary and immersed interface method for electrohydrodynamic simulations. J. Comput. Phys. 282, 4761.
Hu, C. & Shu, C.-W. 1999 Weighted essentially non-oscillatory schemes on triangular meshes. J. Comput. Phys. 150, 97127.
Huang, Z.-M., Zhang, Y.-Z., Kotaki, M. & Ramakrishna, S. 2003 A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 22232253.
Jaswon, M. A. 1963 Integral equation methods in potential theory. I. Proc. R. Soc. Lond. A 275, 2332.
Jones, T. B. 1984 Quincke rotation of spheres. IEEE Trans. Ind. Applics IA‐20, 845849.
Kennedy, M. R., Pozrikidis, C. & Skalak, R. 1994 Motion and deformation of liquid drops, and the rheology of dilute emulsions in simple shear flow. Comput. Fluids 23, 251278.
Kim, S. & Karrila, S. J. 2013 Microhydrodynamics: Principles and Selected Applications. Dover.
Krause, S. & Chandratreya, P. 1998 Electrorotation of deformable fluid droplets. J. Colloid Interface Sci. 206, 1018.
Lac, E. & Homsy, G. M. 2007 Axisymmetric deformation and stability of a viscous drop in a steady electric field. J. Fluid Mech. 590, 239264.
Lanauze, J. A., Walker, L. M. & Khair, A. S. 2013 The influence of inertia and charge relaxation on electrohydrodynamic drop deformation. Phys. Fluids 25, 112101.
Lanauze, J. A., Walker, L. M. & Khair, A. S. 2015 Nonlinear electrohydrodynamics of slightly deformed oblate drops. J. Fluid Mech. 774, 245266.
Landau, L. D., Lifshitz, E. M. & Pitaevskiì, L. P. 1984 Electrodynamics of Continuous Media. Elsevier.
Laser, D. J. & Santiago, J. G. 2004 A review of micropumps. J. Micromech. Microengng 14, R35.
Loewenberg, M. & Hinch, E. J. 1996 Numerical simulation of a concentrated emulsion in shear flow. J. Fluid Mech. 321, 395419.
López-Herrera, J. M., Popinet, S. & Herrada, M. A. 2011 A charge-conservative approach for simulating electrohydrodynamic two-phase flows using volume-of-fluid. J. Comput. Phys. 230, 19391955.
Melcher, J. R. & Taylor, G. I. 1969 Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu. Rev. Fluid Mech. 1, 111146.
Miksis, M. J. 1981 Shape of a drop in an electric field. Phys. Fluids 24, 19671972.
O’Konski, C. T. & Thacher, H. C. 1953 The distortion of aerosol droplets by an electric field. J. Phys. Chem. 57, 955958.
Pannacci, N., Lemaire, E. & Lobry, L. 2007 Rheology and structure of a suspension of particles subjected to quincke rotation. Rheol. Acta 46, 899904.
Pozrikidis, C. 1992 Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press.
Pozrikidis, C. 2002 A Practical Guide to Boundary Element Methods with the Software Library BEMLIB. CRC Press.
Pozrikidis, C. 2011 Introduction to Theoretical and Computational Fluid Dynamics. Oxford University Press.
Quincke, G. 1896 Über rotationen im constanten electrischen Felde. Ann. Phys. Chem. 59, 417486.
Rallison, J. M. & Acrivos, A. 1978 A numerical study of the deformation and burst of a viscous drop in an extensional flow. J. Fluid Mech. 89, 191200.
Saad, Y. & Schultz, M. H. 1986 GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856869.
Salipante, P. F. & Vlahovska, P. M. 2010 Electrohydrodynamics of drops in strong uniform DC electric fields. Phys. Fluids 22, 112110.
Salipante, P. F. & Vlahovska, P. M. 2013 Electrohydrodynamic rotations of a viscous droplet. Phys. Rev. E 88, 043003.
Sato, H., Kaji, N., Mochizuki, T. & Mori, Y. H. 2006 Behavior of oblately deformed droplets in an immiscible dielectric liquid under a steady and uniform electric field. Phys. Fluids 18, 127101.
Schnitzer, O. & Yariv, E. 2015 The Taylor–Melcher leaky dielectric model as a macroscale electrokinetic description. J. Fluid Mech. 773, 133.
Schramm, L. L. 1992 Emulsions: Fundamentals and Applications in the Petroleum Industry. American Chemical Society.
Sellier, A. 2006 On the computation of the derivatives of potentials on a boundary by using boundary-integral equations. Comput. Meth. Appl. Mech. Engng 196, 489501.
Sherwood, J. D. 1988 Breakup of fluid droplets in electric and magnetic fields. J. Fluid Mech. 188, 133146.
Shkadov, V. Y. & Shutov, A. A. 2002 Drop and bubble deformation in an electric field. Fluid Dyn. 37, 713724.
Simpson, G. C. 1909 On the electricity of rain and its origin in thunderstorms. Phil. Trans. R. Soc. Lond. A 209, 379413.
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.
Supeene, G., Koch, C. R. & Bhattacharjee, S. 2008 Deformation of a droplet in an electric field: nonlinear transient response in perfect and leaky dielectric media. J. Colloid Interface Sci. 318, 463476.
Symm, G. T. 1963 Integral equation methods in potential theory. II. Proc. R. Soc. Lond. A 275, 3346.
Taylor, G. I. 1964 Disintegration of water drops in an electric field. Proc. R. Soc. Lond. A 280, 383397.
Taylor, G. I. 1966 Studies in electrohydrodynamics. I. The circulation produced in a drop by electrical field. Proc. R. Soc. Lond. A 291, 159166.
Taylor, G. I. 1969 Electrically driven jets. Proc. R. Soc. Lond. A 313, 453475.
Torza, S., Cox, R. G. & Mason, S. G. 1971 Electrohydrodynamic deformation and burst of liquid drops. Phil. Trans. R. Soc. Lond. A 269, 295319.
Tyatyushkin, A. N.2017 Unsteady electrorotation of a drop in a constant electric field. arXiv:1703.00434 [physics.flu-dyn].
Varshney, A., Ghosh, S., Bhattacharya, S. & Yethiraj, A. 2012 Self organization of exotic oil-in-oil phases driven by tunable electrohydrodynamics. Sci. Rep. 2, 738.
Varshney, A., Gohil, S., Sathe, M., Rv, S. R., Joshi, J. B., Bhattacharya, S., Yethiraj, A. & Ghosh, S. 2016 Multiscale flow in an electro-hydrodynamically driven oil-in-oil emulsion. Soft Matt. 12, 17591764.
Veerapaneni, S. 2016 Integral equation methods for vesicle electrohydrodynamics in three dimensions. J. Comput. Phys. 326, 278289.
Vlahovska, P. M. 2011 On the rheology of a dilute emulsion in a uniform electric field. J. Fluid Mech. 670, 481503.
Xu, X. & Homsy, G. M. 2006 The settling velocity and shape distortion of drops in a uniform electric field. J. Fluid Mech. 564, 395414.
Yariv, E. & Almog, Y. 2016 The effect of surface-charge convection on the settling velocity of spherical drops in a uniform electric field. J. Fluid Mech. 797, 536548.
Yariv, E. & Frankel, I. 2016 Electrohydrodynamic rotation of drops at large electric Reynolds numbers. J. Fluid Mech. 788, R2.
Yon, S. & Pozrikidis, C. 1998 A finite-volume/boundary-element method for flow past interfaces in the presence of surfactants, with application to shear flow past a viscous drop. Comput. Fluids 27, 879902.
Zabarankin, M. 2013 A liquid spheroidal drop in a viscous incompressible fluid under steady electric field. SIAM J. Appl. Math. 73, 677699.
Zhang, J., Zahn, J. D. & Lin, H. 2013 Transient solution for droplet deformation under electric fields. Phys. Rev. E 87, 043008.
Zinchenko, A. Z. & Davis, R. H. 2000 An efficient algorithm for hydrodynamical interaction of many deformable drops. J. Comput. Phys. 157, 539587.
Zinchenko, A. Z., Rother, M. A. & Davis, R. H. 1997 A novel boundary-integral algorithm for viscous interaction of deformable drops. Phys. Fluids 9, 14931511.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Type Description Title
VIDEO
Movies

Das and Saintillan supplementary material movie 1
Movie showing the deformation and flow field in the simulations of figure 4

 Video (8.7 MB)
8.7 MB
VIDEO
Movies

Das and Saintillan supplementary material movie 2
Movie showing the deformation and flow field in the simulations of figure 6

 Video (22.5 MB)
22.5 MB

Electrohydrodynamics of viscous drops in strong electric fields: numerical simulations

  • Debasish Das (a1) and David Saintillan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed