Skip to main content Accessibility help

Effective slip boundary conditions for arbitrary one-dimensional surfaces

  • Evgeny S. Asmolov (a1) (a2) (a3) and Olga I. Vinogradova (a1) (a4) (a5)


In many applications it is advantageous to construct effective slip boundary conditions, which could fully characterize flow over patterned surfaces. Here we focus on laminar shear flows over smooth anisotropic surfaces with arbitrary scalar slip , varying in only one direction. We derive general expressions for eigenvalues of the effective slip-length tensor, and show that the transverse component is equal to half of the longitudinal one, with a two times larger local slip, . A remarkable corollary of this relation is that the flow along any direction of the one-dimensional surface can be easily determined, once the longitudinal component of the effective slip tensor is found from the known spatially non-uniform scalar slip.


Corresponding author

Email address for correspondence:


Hide All
1. Asmolov, E. S. 2008 Shear-induced self-diffusion in a wall-bounded dilute suspension. Phys. Rev. E 77, 66312.
2. Asmolov, E. S., Belyaev, A. V. & Vinogradova, O. I. 2011 Drag force on a sphere moving towards an anisotropic super-hydrophobic plane. Phys. Rev. E 84, 026330.
3. Bahga, S. S., Vinogradova, O. I. & Bazant, M. Z. 2010 Anisotropic electro-osmotic flow over super-hydrophobic surfaces. J. Fluid Mech. 644, 245255.
4. Bazant, M. Z. & Vinogradova, O. I. 2008 Tensorial hydrodynamic slip. J. Fluid Mech. 613, 125134.
5. Belyaev, A. V. & Vinogradova, O. I. 2010a Effective slip in pressure-driven flow past super-hydrophobic stripes. J. Fluid Mech. 652, 489499.
6. Belyaev, A. V. & Vinogradova, O. I. 2010b Hydrodynamic interaction with super-hydrophobic surfaces. Soft Matt. 6, 45634570.
7. Belyaev, A. V. & Vinogradova, O. I. 2011 Electro-osmosis on anisotropic super-hydrophobic surfaces. Phys. Rev. Lett. 107, 098301.
8. Cottin-Bizonne, C., Barentin, C. & Bocquet, L. 2012 Scaling laws for slippage on superhydrophobic fractal surfaces. Phys. Fluids 24, 012001.
9. Cottin-Bizonne, C., Barentin, C., Charlaix, E., Bocquet, L. & Barrat, J. L. 2004 Dynamics of simple liquids at heterogeneous surfaces: molecular-dynamics simulations and hydrodynamic description. Eur. Phys. J. E 15, 427438.
10. Davis, A. M. J. & Lauga, E. 2010 Hydrodynamic friction of fakir-like superhydrophobic surfaces. J. Fluid Mech. 661, 402411.
11. Feuillebois, F., Bazant, M. Z. & Vinogradova, O. I. 2009 Effective slip over superhydrophobic surfaces in thin channels. Phys. Rev. Lett. 102, 026001.
12. Kamrin, K., Bazant, M. Z. & Stone, H. A. 2010 Effective slip boundary conditions for arbitrary periodic surfaces: the surface mobility tensor. J. Fluid Mech. 658, 409437.
13. Lauga, E. & Stone, H. A. 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 5577.
14. Ng, C. O., Chu, H. C. W. & Wang, C. Y. 2010 On the effects of liquid–gas interfacial shear on slip flow through a parallel-plate channel with superhydrophobic grooved walls. Phys. Fluids 22, 102002.
15. Ng, C. O. & Wang, C. Y. 2009 Stokes shear flow over a grating: implications for superhydrophobic slip. Phys. Fluids 21, 013602.
16. Ng, C. O. & Wang, C. Y. 2011 Oscillatory flow through a channel with stick-slip walls: complex Navier’s slip length. Trans. ASME: J. Fluids Engng 133, 014502.
17. Philip, J. R. 1972 Flows satisfying mixed no-slip and no-shear conditions. Z. Angew. Math. Phys. 23, 353372.
18. Priezjev, N. V. 2011 Molecular diffusion and slip boundary conditions at smooth surfaces with periodic and random nanoscale textures. J. Chem. Phys. 135, 204704.
19. Priezjev, N. V., Darhuber, A. A. & Troian, S. M. 2005 Slip behavior in liquid films on surfaces of patterned wettability. Phys. Rev. E 71, 041608.
20. Sbragaglia, M. & Prosperetti, A. 2007 A note on the effective slip properties for microchannel flows with ultrahydrophobic surfaces. Phys. Fluids 19, 043603.
21. Schmieschek, S., Belyaev, A. V., Harting, J. & Vinogradova, O. I. 2012 Tensorial slip of super-hydrophobic channels. Phys. Rev. E 85, 016324.
22. Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices. Annu. Rev. Fluid Mech. 36, 381411.
23. Teo, C. & Khoo, B. 2009 Analysis of Stokes flow in microchannels with superhydrophobic surfaces containing a periodic array of micro-grooves. Microfluid Nanofluid 7, 353.
24. Vinogradova, O. I. & Belyaev, A. V. 2011 Wetting, roughness and flow boundary conditions. J. Phys.: Condens. Matt. 23, 184104.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Effective slip boundary conditions for arbitrary one-dimensional surfaces

  • Evgeny S. Asmolov (a1) (a2) (a3) and Olga I. Vinogradova (a1) (a4) (a5)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed