Skip to main content Accessibility help
×
Home

Effect of turbulent fluctuations on the drag and lift forces on a towed sphere and its boundary layer

  • Holger Homann (a1), Jérémie Bec (a1) and Rainer Grauer (a2)

Abstract

The impact of turbulent fluctuations on the forces exerted by a fluid on a towed spherical particle is investigated by means of high-resolution direct numerical simulations. The measurements are carried out using a novel scheme to integrate the two-way coupling between the particle and the incompressible surrounding fluid flow maintained in a high-Reynolds-number turbulent regime. The main idea consists of combining a Fourier pseudo-spectral method for the fluid with an immersed-boundary technique to impose the no-slip boundary condition on the surface of the particle. This scheme is shown to converge as the power $3/ 2$ of the spatial resolution. This behaviour is explained by the ${L}_{2} $ convergence of the Fourier representation of a velocity field displaying discontinuities of its derivative. Benchmarking of the code is performed by measuring the drag and lift coefficients and the torque-free rotation rate of a spherical particle in various configurations of an upstream-laminar carrier flow. Such studies show a good agreement with experimental and numerical measurements from other groups. A study of the turbulent wake downstream of the sphere is also reported. The mean velocity deficit is shown to behave as the inverse of the distance from the particle, as predicted from classical similarity analysis. This law is reinterpreted in terms of the principle of ‘permanence of large eddies’ that relates infrared asymptotic self-similarity to the law of decay of energy in homogeneous turbulence. The developed method is then used to attack the problem of an upstream flow that is in a developed turbulent regime. It is shown that the average drag force increases as a function of the turbulent intensity and the particle Reynolds number. This increase is significantly larger than predicted by standard drag correlations based on laminar upstream flows. It is found that the relevant parameter is the ratio of the viscous boundary layer thickness to the dissipation scale of the ambient turbulent flow. The drag enhancement can be motivated by the modification of the mean velocity and pressure profile around the sphere by small-scale turbulent fluctuations. It is demonstrated that the variance of the drag force fluctuations can be modelled by means of standard drag correlations. Temporal correlations of the drag and lift forces are also presented.

Copyright

Corresponding author

Email address for correspondence: holger.homann@oca.eu

References

Hide All
Amoura, Z., Roig, V., Risso, F. & Billet, A.-M. 2010 Attenuation of the wake of a sphere in an intense incident turbulence with large length scales. Phys. Fluids 22, 055105.
Anderson, Uhlherr 1977 The influence of stream turbulence on the drag of freely endtrained spheres. In 6th Australasian Hydraulics and Fluid Mechanics Conference Adelaide, Australia, 5–9 December 1977, pp. 541–545.
Angot, P., Bruneau, C. H. & Fabrie, P. 1999 A penalization method to take into account obstacles in incompressible viscous flows. Numer. Math. 81 (4), 497520.
Bagchi, P. & Balachandar, S. 2002 Effect of free rotation on the motion of a solid sphere in linear shear flow at moderate Re. Phys. Fluids 14, 27192737.
Bagchi, P. & Balachandar, S. 2003 Effect of turbulence on the drag and lift of a particle. Phys. Fluids 15 (11), 3496.
Bagchi, P. & Balachandar, S. 2004 Response of the wake of an isolated particle to an isotropic turbulent flow. J. Fluid Mech. 518, 95123.
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42 (1), 111133.
Brown, D. L., Cortez, R. & Minion, M. L. 2001 Accurate projection methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 168 (2), 464499.
Brucato, A, Grisafi, F & Montante, G 1998 Particle drag coefficients in turbulent fluids. Chem. Engng Sci. 53 (18), 32953314.
Burton, T. & Eaton, J. K. 2005 Fully resolved simulations of particle–turbulence interaction. J. Fluid Mech. 545, 67111.
Calzavarini, E., Volk, R., Bourgoin, M., Leveque, E., Pinton, J. F. & Toschi, F. 2009 Acceleration statistics of finite-sized particles in turbulent flow: the role of Faxén forces. J. Fluid Mech. 630, 179190.
Calzavarini, E., Volk, R., Lévqˆue, E., Pinton, J. F. & Toschi, F. 2012 Impact of trailing wake drag on the statistical properties and dynamics of finite-sized particle in turbulence. Physica D 241 (3), 237244.
Dandy, D. S. & Dwyer, H. A. 1990 A sphere in shear flow at finite Reynolds number: effect of shear on particle lift, drag, and heat transfer. J. Fluid Mech. 216, 381410.
Eames, I., Johnson, P. B., Roig, V. & Risso, F. 2011 Effect of turbulence on the downstream velocity deficit of a rigid sphere. Phys. Fluids 23, 095103.
Fadlun, E. A., Verzicco, R., Orlandi, P. & Mohd-Yusof, J. 2000 Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 60, 3560.
Frisch, U. 1995 Turbulence. Cambridge University Press.
Goldstein, D., Handler, R. & Sirovich, L. 1993 Modelling a no-slip flow boundary with an external force field. J. Comp. Phys. 105, 354366.
Homann, H. & Bec, J. 2010 Finite-size effects in the dynamics of neutrally buoyant particles in turbulent flow. J. Fluid Mech. 651, 8191.
Kim, J. & Balachandar, S. 2012 Mean and fluctuating components of drag and lift forces on an isolated finite-sized particle in turbulence. Theor. Comput. Fluid Dyn. 26 (1), 185204.
Kolmogorov, A. N. 1941 Energy dissipation in locally isotropic turbulence. Dokl. Akad. Nauk SSSR 32, 1921.
Kurose, R. & Komori, S. 1999 Drag and lift forces on a rotating sphere in a linear shear flow. J. Fluid Mech. 384, 183206.
Le Clair, B. P., Hamielec, A. E. & Pruppacher, H. R. 1970 A numerical study of the drag on a sphere at low and intermediate Reynolds numbers. J. Atmos. Sci. 27, 308315.
Lin, C. J., Peery, J. H. & Showalter, W. R. 1970 Simple shear flow round inertial effects and suspension rheology. J. Fluid Mech. 44, 117.
Luo, K., Wang, Z. & Fan, J. 2010 Response of force behaviours of a spherical particle to an oscillating flow. Phys. Lett. A 374 (30), 30463052.
Merle, A., Legendre, D. & Magnaudet, J. 2005 Forces on a high-Reynolds-number spherical bubble in a turbulent flow. J. Fluid Mech. 532, 5362.
Mohd-Yusof, J. 1997 Combined immersed boundary/b-spline methods for simulations of flow in complex geometries. Center for Turbulence Research – Annual Research Briefs pp. 317–327.
Naso, A. & Prosperetti, A. 2010 The interaction between a solid particle and a turbulent flow. New J. Phys. 12 (3), 033040.
Pasquetti, R., Bwemba, R. & Cousin, L. 2008 A pseudo-penalization method for high Reynolds number unsteady flows. Appl. Numer. Math. 58 (7), 946954.
de Pater, I. & Lissauer, J. 2001 Planetary Science. Cambridge University Press.
Patterson, G. S. & Orszag, S. A. 1971 Spectral calculation of isotropic turbulence: efficient removal of aliasing interaction. Phys. Fluids 14, 25382541.
Peskin, C. S. 1977 Numerical analysis of blood flow in the heart. J. Comput. Phys. 25, 220252.
Pope, S. B. 2000 Turbulent Flows, 1st edn. Cambridge University Press.
Prosperetti, A. & Oguz, H. N. 2001 Physalis: a new o(N) method for the numerical simulation of disperse systems: potential flow of spheres. J. Comput. Phys. 167 (1), 196216.
Qureshi, N. M., Bourgoin, M., Baudet, C., Cartellier, A. & Gagne, Y. 2007 Turbulent transport of material particles: an experimental study of finite size effects. Phys. Rev. Lett. 99 (18), 184502.
Schiller, L. & Naumann, A. 1933 Über die grundlegenden berechnungen bei der schwerkraftaufbereitung. Verein. Deutsch. Ing. 77, 318320.
Schlichting, H. 1979 Boundary-Layer Theory. McGraw-Hill.
Seinfeld, J. H. & Pandis, S. N. 1998 From Air Pollution to Climate Change. John Wiley and Sons.
Shaw, R. A. 2003 Particle–turbulence interactions in atmospheric clouds. Annu. Rev. Fluid Mech. 35 (1), 183227.
Shu, C. & Osher, S. 1988 Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439471.
Taira, K. & Colonius, T. 2007 The immersed boundary method: a projection approach. J. Comput. Phys. 225 (2), 21182137.
Uberoi, M. S. & Freymuth, P. 1970 Turbulent energy balance and spectra of the axisymmetric wake. Phys. Fluids 13, 22052210.
Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209 (2), 448476.
Volk, R., Calzavarini, E., Lévêque, E. & Pinton, J.-F. 2011 Dynamics of inertial particles in a turbulent von Kármán flow. J. Fluid Mech. 668, 223235.
Warnica, W. D., Renksizbulut, M. & Strong, A. B. 1995 Drag coefficients of spherical liquid droplets. Part 2: Turbulent gaseous fields. Exp. Fluids 18 (4), 265276.
Wu, J.-S. & Faeth, G. M. 1994 Sphere wakes at moderate Reynolds numbers in a turbulent environment. AIAA J. 32 (3), 535541.
Xu, H. & Bodenschatz, E. 2008 Motion of inertial particles with size larger than Kolmogorov scale in turbulent flows. Physica D: Nonlinear Phenomena 237 (14–17), 20952100.
Yeo, K., Dong, S., Climent, E. & Maxey, M. R. 2010 Modulation of homogeneous turbulence seeded with finite size bubbles or particles. Intl J. Multiphase Flow 36 (3), 221233.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Effect of turbulent fluctuations on the drag and lift forces on a towed sphere and its boundary layer

  • Holger Homann (a1), Jérémie Bec (a1) and Rainer Grauer (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.