Skip to main content Accessibility help
×
Home

Dynamic stall in vertical axis wind turbines: scaling and topological considerations

  • Abel-John Buchner (a1) (a2), Julio Soria (a2) (a3), Damon Honnery (a2) and Alexander J. Smits (a1)

Abstract

Vertical axis wind turbine blades are subject to rapid, cyclical variations in angle of attack and relative airspeed which can induce dynamic stall. This phenomenon poses an obstacle to the greater implementation of vertical axis wind turbines because dynamic stall can reduce turbine efficiency and induce structural vibrations and noise. This study seeks to provide a more comprehensive description of dynamic stall in vertical axis wind turbines, with an emphasis on understanding its parametric dependence and scaling behaviour. This problem is of practical relevance to vertical axis wind turbine design but the inherent coupling of the pitching and velocity scales in the blade kinematics makes this problem of more broad fundamental interest as well. Experiments are performed using particle image velocimetry in the vicinity of the blades of a straight-bladed gyromill-type vertical axis wind turbine at blade Reynolds numbers of between 50 000 and 140 000, tip speed ratios between $\unicode[STIX]{x1D706}=1$ to $\unicode[STIX]{x1D706}=5$ , and dimensionless pitch rates of $0.10\leqslant K_{c}\leqslant 0.20$ . The effect of these factors on the evolution, strength and timing of vortex shedding from the turbine blades is determined. It is found that tip speed ratio alone is insufficient to describe the circulation production and vortex shedding behaviour from vertical axis wind turbine blades, and a scaling incorporating the dimensionless pitch rate is proposed.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Dynamic stall in vertical axis wind turbines: scaling and topological considerations
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Dynamic stall in vertical axis wind turbines: scaling and topological considerations
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Dynamic stall in vertical axis wind turbines: scaling and topological considerations
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: a.j.buchner@tudelft.nl

References

Hide All
Abbott, I. H. & von Doenhoff, A. E. 1959 Theory of Wing Sections, Including a Summary of Airfoil Data. Dover Publications.
Abraham, J. P., Plourde, B. D., Mowry, G. S., Minkowycz, W. J. & Sparrow, E. M. 2012 Summary of Savonius wind turbine development and future applications for small-scale power generation. J. Renew. Sustainable Energy 4, 042703.
Albertson, J., Troutt, T. & Kedzie, C.1988 Unsteady aerodynamic forces at low airfoil pitching rates. F. J. Seiler Research Laboratory Technical Report, FJSRL-PR-90-0015.
Araya, D. B., Colonius, T. & Dabiri, J. O. 2017 Transition to bluff body dynamics in the wake of vertical-axis wind turbines. J. Fluid Mech. 813, 346381.
Araya, D. B. & Dabiri, J. O. 2015a A comparison of wake measurements in motor-driven and flow-driven turbine experiments. Exp. Fluids 56 (7), 150.
Araya, D. B. & Dabiri, J. O. 2015b Vertical axis wind turbine in a falling soap film. Phys. Fluids 27 (9), 091108.
Arroyo, M. P. & Greated, C. A. 1991 Stereoscopic particle image velocimetry. Meas. Sci. Technol. 2 (12), 11811186.
Bachant, P. & Wosnik, M. 2016 Effects of reynolds number on the energy conversion and near-wake dynamics of a high solidity vertical-axis cross-flow turbine. Energies 9 (2), 73.
Baker, J. R. 1983 Features to aid or enable self starting of fixed pitch low solidity vertical axis wind turbines. J. Wind Engng Ind. Aerodyn. 15, 369380.
Barsky, D. 2014 Experimental and computational wake characterization of a vertical axis wind turbine. In 32nd AIAA Applied Aerodynamics Conference, Atlanta, GA, June 16–20, AIAA Paper 2014-3141.
Bastankhah, M. & Porté-Agel, F. 2016 Experimental and theoretical study of wind turbine wakes in yawed conditions. J. Fluid Mech. 806, 506541.
Brusca, S., Lanzafame, R. & Messina, M. 2014 Design of a vertical-axis wind turbine: how the aspect ratio affects the turbine’s performance. Intl J. Energy Environ. Engng 5, 333340.
Buchholz, J. H. J., Green, M. A. & Smits, A. J. 2011 Scaling the circulation shed by a pitching panel. J. Fluid Mech. 688, 591601.
Buchner, A.-J., Buchmann, N. A., Kilany, K., Atkinson, C. H. & Soria, J. 2012 Stereoscopic and tomographic PIV of a pitching plate. Exp. Fluids 52, 299314.
Buchner, A.-J., Honnery, D. R. & Soria, J. 2017 Stability and three–dimensional evolution of a transitional dynamic stall vortex. J. Fluid Mech. 823, 166197.
Buchner, A.-J., Lohry, M. W., Martinelli, L., Soria, J. & Smits, A. J. 2015a Dynamic stall in vertical axis wind turbines: comparing experiments and computations. J. Wind Engng Ind. Aerodyn. 146, 163171.
Buchner, A.-J., Smits, A. J. & Soria, J. 2014 Scaling of vertical axis wind turbine dynamic stall. In 19th Australasian Fluid Mechanics Conference, Melbourne, Australia.
Buchner, A.-J. & Soria, J. 2013 Measurements of the three-dimensional topological evolution of a dynamic stall event using wavelet methods. In 31st AIAA Applied Aerodynamics Conference, San Diego, California.
Buchner, A.-J. & Soria, J. 2014 Measurements of the flow due to a rapidly pitching plate using time resolved high resolution PIV. Aerosp. Sci. Technol. 44, 417.
Buchner, A.-J., Soria, J. & Smits, A. J. 2015b Circulation production and shedding from vertical axis wind turbine blades undergoing dynamic stall. In 9th International Symposium on Turbulence and Shear Flow Phenomena, Melbourne, Australia.
Carr, L. W. 1988 Progress in analysis and prediction of dynamic stall. J. Aircraft 25 (1), 617.
Dabiri, J. O. 2009 Optimal vortex formation as a unifying principle in biological propulsion. Annu. Rev. Fluid Mech. 41 (1), 1733.
Dabiri, J. O. 2011 Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical axis wind turbine arrays. J. Renew. Sustainable Energy 3, 043104.
Darrieus, G. J. M.1931 Turbine having its rotating shaft transverse to the flow of the current. US Patent 1835018.
Domenichini, F. 2011 Three-dimensional impulsive vortex formation from slender orifices. J. Fluid Mech. 666, 506520.
Dunne, R., Schmid, P. J. & McKeon, B. J. 2016 Analysis of flow timescales on a periodically pitching/surging airfoil. AIAA J. 54 (11), 34213433.
Ferreira, C. S. & Geurts, B. 2015 Aerofoil optimization for vertical-axis wind turbines. Wind Energy 18 (8), 13711385.
Ferreira, C. S., van Kuik, G., van Bussel, G. & Scarano, F. 2009 Visualisation by PIV of dynamic stall on a vertical axis wind turbine. Exp. Fluids 46, 97108.
Fujisawa, N. & Shibuya, S. 2001 Observations of dynamic stall on Darrieus wind turbine blades. J. Wind Engng Ind. Aerodyn. 89, 201214.
Garmann, D. J. & Visbal, M. R. 2011 Numerical investigation of transitional flow over a rapidly pitching plate. Phys. Fluids 23, 094106.
Gault, D. E.1957 A correlation of low-speed, airfoil-section stalling characteristics with Reynolds number and airfoil geometry. NACA Tech. Note 3963.
Geissler, W. & Haselmeyer, H. 2006 Investigation of dynamic stall onset. Aerosp. Sci. Technol. 10 (7), 590600.
Gharib, M., Rambod, E. & Shariff, K. 1998 A universal time scale for vortex ring formation. J. Fluid Mech. 360, 121140.
Global Wind Energy Council 2015 Global Wind Report Annual Market Update: Global Status of Wind Power in 2015.
Green, M., Rowley, C. & Smits, A. J. 2011 The unsteady three–dimensional wake produced by a trapezoidal pitching panel. J. Fluid Mech. 685, 117145.
Haller, G. 2005 An objective definition of a vortex. J. Fluid Mech. 525, 126.
Jones, B. M.1933 An experimental study of the stalling of wings. Technical Report of the British Aeronautical Research Committee, R. & M. 1588.
Keane, R. D. & Adrian, R. J. 1992 Theory of cross-correlation analysis of PIV images. Appl. Sci. Res. 49 (3), 191215.
Kinzel, M., Mulligan, Q. & Dabiri, J. O. 2012 Energy exchange in an array of vertical axis wind turbines. J. Turbul. 13 (38), 113.
Laneville, A. & Vittecoq, P. 1986 Dynamic stall: the case of the vertical axis wind turbine. J. Solar Energy Engng 108, 140145.
Leishman, J. G. & Beddoes, T. S. 1986 A semi-empirical model for dynamic stall. J. Am. Helicopter Soc. 34, 317.
Lignarolo, L. E. M., Ragni, D., Scarano, F., Simão Ferreira, C. J. & van Bussel, G. J. W. 2015 Tip-vortex instability and turbulent mixing in wind–turbine wakes. J. Fluid Mech. 781, 467493.
McCroskey, W. J., Carr, L. W. & McAlister, K. W. 1976 Dynamic stall experiments on oscillating airfoils. AIAA J. 14 (1), 5763.
O’Farrell, C. & Dabiri, J. O. 2014 Pinch-off of non-axisymmetric vortex rings. J. Fluid Mech. 740, 6196.
Okulov, V. L. & Sørensen, J. N. 2010 Maximum efficiency of wind turbine rotors using Joukowsky and Betz approaches. J. Fluid Mech. 649, 497508.
Ol, M. V., Bernal, L., Kang, C.-K. & Shyy, W. 2009a Shallow and deep dynamic stall for flapping low Reynolds number airfoils. Exp. Fluids 46 (5), 883901.
Ol, M. V., Eldredge, J. D. & Wang, C. 2009b High-amplitude pitch of a flat plate: an abstraction of perching and flapping. Intl J. Micro Air Vehicles 1 (3), 3348.
Parker, C. & Leftwich, M. 2016 The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers. Exp. Fluids 57 (5), 111.
Pitt Ford, C. W. & Babinsky, H. 2013 Lift and the leading edge vortex. J. Fluid Mech. 720, 280313.
Prasad, A. K. 2000 Stereoscopic particle image velocimetry. Exp. Fluids 29, 103116.
Raffel, M., Willert, C., Wereley, S. & Kompenhans, J. 2007 Particle Image Velocimetry: A Practical Guide, 2nd edn. Springer.
Ragni, D., Ferreira, C. S. & Correale, G. 2015 Experimental investigation of an optimized airfoil for vertical-axis wind turbines. Wind Energy 18 (9), 16291643.
Ramesh, K., Gopalarathnam, A., Granlund, K., Ol, M. V. & Edwards, J. R. 2014 Discrete-vortex method with novel shedding criterion for unsteady aerofoil flows with intermittent leading-edge vortex shedding. J. Fluid Mech. 751, 500538.
Sarmast, S., Dadfar, R., Mikkelsen, R. F., Schlatter, P., Ivanell, S., Sørensen, J. N. & Henningson, D. S. 2014 Mutual inductance instability of the tip vortices behind a wind turbine. J. Fluid Mech. 755, 705731.
Savonius, S. J. 1931 The S-rotor and its application. J. Mech. Engng 53 (5), 333338.
Scheurich, F. & Brown, R. E. 2011 Effect of dynamic stall on aerodynamics of vertical axis wind turbines. AIAA J. 49 (11), 25112521.
Shyy, W., Lian, Y., Tang, J., Viieru, D. & Liu, H. 2008 Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press.
Soloff, S. M., Adrian, R. J. & Liu, Z.-C. 1997 Distortion compensation for generalized stereoscopic particle image velocimetry. Meas. Sci. Technol. 8 (12), 14411454.
Soria, J. 1996 An investigation of the near wake of a circular cylinder using a video-based digital cross-correlation particle image velocimetry technique. Exp. Therm. Fluid Sci. 12 (2), 221233.
Soria, J., New, T. H., Lim, T. T. & Parker, K. 2003 Multigrid CCDPIV measurements of accelerated fow past an airfoil at an angle of attack of 30° . Exp. Therm. Fluid Sci. 27 (5), 667676.
Sutherland, H. J., Berg, D. E. & Ashwill, T. D.2012 A retrospective of VAWT technology. Sandia Report SAND2012-0304.
Veers, P. S. 1982 Blade fatigue life assessment with application to VAWTs. ASME J. Solar Energy Engng 104 (2), 106111.
Westerweel, J. & Scarano, F. 2005 Universal outlier detection for PIV data. Exp. Fluids 39 (6), 10961100.
Whittlesey, R. W., Liska, S. C. & Dabiri, J. O. 2010 Fish schooling as a basis for vertical-axis wind turbine farm design. Bioinspir. Biomim. 5, 16.
Willert, C. E. & Gharib, M. 1991 Digital particle image velocimetry. Exp. Fluids 10 (4), 181193.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Dynamic stall in vertical axis wind turbines: scaling and topological considerations

  • Abel-John Buchner (a1) (a2), Julio Soria (a2) (a3), Damon Honnery (a2) and Alexander J. Smits (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.