Skip to main content Accessibility help

Deformation of spherical compound capsules in simple shear flow

  • Zheng Yuan Luo (a1), Long He (a1) and Bo Feng Bai (a1)


The deformation of a compound capsule (an elastic capsule with a smaller capsule inside) in simple shear flow is studied by using three-dimensional numerical simulations based on a front tracking method. The inner and outer capsules are concentric and initially spherical. Skalak et al.’s constitutive law is employed for the mechanics of both the inner and outer membranes. Our results concerning the deformation of homogeneous capsules (i.e. capsules without the inner capsules) are quantitatively in agreement with the predictions of previous numerical simulations and perturbation theories. Compared to homogeneous capsules, compound capsules exhibit smaller deformation. The deformations of both the inner and outer capsules are significantly affected by the capillary numbers of the inner and outer membranes and the volume ratio of the inner to the outer capsule. When the inner capsule is small, it presents smaller deformation than the outer capsule. However, when the inner capsule is sufficiently large, it can present larger deformation than the outer capsule, even if the inner membrane has much lower capillary number than the outer membrane. The underlying mechanisms are discussed: (i) the inner capsule is deformed by rotational flow with lower rate of strain rather than by simple shear flow that deforms the outer capsule, and thus the inner capsule exhibits smaller deformation; and (ii) when the inner and outer membranes are sufficiently close (i.e. the inner capsule is sufficiently large), the hydrodynamic interaction between the two membranes becomes significant, which is found to inhibit the deformation of the outer capsule but to promote the deformation of the inner capsule.


Corresponding author

Email address for correspondence:


Hide All
Abreu, D., Levant, M., Steinberg, V. & Seifert, U. 2014 Fluid vesicles in flow. Adv. Colloid Interface Sci. 208, 129141.
Agresar, G., Linderman, J. J., Tryggvason, G. & Powell, K. G. 1998 An adaptive, Cartesian, front-tracking method for the motion, deformation and adhesion of circulating cells. J. Comput. Phys. 143, 346380.
Bagchi, P. & Kalluri, R. M. 2009 Dynamics of nonspherical capsules in shear flow. Phys. Rev. E 80, 016307.
Bai, B., Luo, Z., Lu, T. & Xu, F. 2013a Numerical simulation of cell adhesion and detachment in microfluidics. J. Mech. Med. Biol. 13, 1350002.
Bai, B. F., Luo, Z. Y., Wang, S. Q., He, L., Lu, T. J. & Xu, F. 2013b Inertia effect on deformation of viscoelastic capsules in microscale flows. Microfluid. Nanofluid. 14, 817829.
Barthes-Biesel, D., Diaz, A. & Dhenin, E. 2002 Effect of constitutive laws for two-dimensional membranes on flow-induced capsule deformation. J. Fluid Mech. 460, 211222.
Barthes-Biesel, D. & Rallison, J. M. 1981 The time-dependent deformation of a capsule freely suspended in a linear shear flow. J. Fluid Mech. 113, 251267.
Chen, Y., Liu, X. & Shi, M. 2013 Hydrodynamics of double emulsion droplet in shear flow. Appl. Phys. Lett. 102, 051609.
Chu, L.-Y., Utada, A. S., Shah, R. K., Kim, J.-W. & Weitz, D. A. 2007 Controllable monodisperse multiple emulsions. Angew. Chem. Intl Ed. Engl. 46, 89708974.
Doddi, S. K. & Bagchi, P. 2008 Lateral migration of a capsule in a plane Poiseuille flow in a channel. Intl J. Multiphase Flow 34, 966986.
Foessel, E., Walter, J., Salsac, A. V. & Barthes-Biesel, D. 2011 Influence of internal viscosity on the large deformation and buckling of a spherical capsule in a simple shear flow. J. Fluid Mech. 672, 477486.
Hosseini, S. M. & Feng, J. J. 2012 How malaria parasites reduce the deformability of infected red blood cells. Biophys. J. 103, 110.
Kan, H. C., Udaykumar, H. S., Shyy, W. & Tran-Son-Tay, R. 1998 Hydrodynamics of a compound drop with application to leukocyte modeling. Phys. Fluids 10, 760774.
Kaoui, B., Harting, J. & Misbah, C. 2011 Two-dimensional vesicle dynamics under shear flow: effect of confinement. Phys. Rev. E 83, 066319.
Kaoui, B., Kruger, T. & Harting, J. 2012 How does confinement affect the dynamics of viscous vesicles and red blood cells? Soft Matt. 8, 92469252.
Kaoui, B., Kruger, T. & Harting, J. 2013 Complex dynamics of a bilamellar vesicle as a simple model for leukocytes. Soft Matt. 9, 80578061.
Keller, S. R. & Skalak, R. 1982 Motion of a tank-treading ellipsoidal particle in a shear flow. J. Fluid Mech. 120, 2747.
Lac, E. & Barthes-Biesel, D. 2005 Deformation of a capsule in simple shear flow: effect of membrane prestress. Phys. Fluids 17, 072105.
Lac, E., Barthes-Biesel, D., Pelekasis, N. A. & Tsamopoulos, J. 2004 Spherical capsules in three-dimensional unbounded Stokes flows: effect of the membrane constitutive law and onset of buckling. J. Fluid Mech. 516, 303334.
Le, D. V. 2010 Effect of bending stiffness on the deformation of liquid capsules enclosed by thin shells in shear flow. Phys. Rev. E 82, 016318.
Le, D. V. & Tan, Z. 2010 Large deformation of liquid capsules enclosed by thin shells immersed in the fluid. J. Comput. Phys. 229, 40974116.
Levant, M. & Steinberg, V. 2014 Complex dynamics of compound vesicles in linear flow. Phys. Rev. Lett. 112, 138106.
Li, X. Y. & Sarkar, K. 2008 Front tracking simulation of deformation and buckling instability of a liquid capsule enclosed by an elastic membrane. J. Comput. Phys. 227, 49985018.
Luo, Z. Y., He, L., Wang, S. Q., Tasoglu, S., Xu, F., Demirci, U. & Bai, B. F. 2014 Two-dimensional numerical study of flow dynamics of a nucleated cell tethered under shear flow. Chem. Engng Sci. 119, 236244.
Luo, Z. Y., He, L., Xu, F. & Bai, B. F. 2015 Three-dimensional numerical simulation of vesicle dynamics in microscale shear flows. J. Nanosci. Nanotech. 15, 30813086.
Luo, Z. Y., Wang, S. Q., He, L., Lu, T. J., Xu, F. & Bai, B. F. 2013a Front tracking simulation of cell detachment dynamic mechanism in microfluidics. Chem. Engng Sci. 97, 394405.
Luo, Z. Y., Wang, S. Q., He, L., Xu, F. & Bai, B. F. 2013b Inertia-dependent dynamics of three-dimensional vesicles and red blood cells in shear flow. Soft Matt. 9, 96519660.
Olbricht, W. L., Rallison, J. M. & Leal, L. G. 1982 Strong flow criteria based on microstructure deformation. J. Non-Newtonian Fluid Mech. 10, 291318.
Omori, T., Ishikawa, T., Barthes-Biesel, D., Salsac, A. V., Imai, Y. & Yamaguchi, T. 2012 Tension of red blood cell membrane in simple shear flow. Phys. Rev. E 86, 056321.
Omori, T., Ishikawa, T., Imai, Y. & Yamaguchi, T. 2013 Membrane tension of red blood cells pairwisely interacting in simple shear flow. J. Biomech. 46, 548553.
Pozrikidis, C. 2001 Effect of membrane bending stiffness on the deformation of capsules in simple shear flow. J. Fluid Mech. 440, 269291.
Qu, X. & Wang, Y. 2012 Dynamics of concentric and eccentric compound droplets suspended in extensional flows. Phys. Fluids 24, 123302.
Rallison, J. M. 1984 The deformation of small viscous drops and bubbles in shear flows. Annu. Rev. Fluid Mech. 16, 4566.
Ramanujan, S. & Pozrikidis, C. 1998 Deformation of liquid capsules enclosed by elastic membranes in simple shear flow: large deformations and the effect of fluid viscosities. J. Fluid Mech. 361, 117143.
Salac, D. & Miksis, M. J. 2012 Reynolds number effects on lipid vesicles. J. Fluid Mech. 711, 122146.
Schmid-Schonbein, G. W., Shih, Y. Y. & Chien, S. 1980 Morphometry of human leukocytes. Blood 56, 866875.
Serebrennikova, Y. M., Patel, J., Milhous, W. K. & Garcia-Rubio, L. H. 2010 Quantitative analysis of morphological alterations in Plasmodium falciparum infected red blood cells through theoretical interpretation of spectral measurements. J. Theor. Biol. 265, 493500.
Shrivastava, S. & Tang, J. 1993 Large deformation finite element analysis of non-linear viscoelastic membranes with reference to thermoforming. J. Strain Anal. Eng. 28, 3151.
Skalak, R., Tozeren, A., Zarda, R. P. & Chien, S. 1973 Strain energy function of red blood cell membranes. Biophys. J. 13, 245280.
Smith, K. A., Ottino, J. M. & de la Cruz, M. O. 2004 Encapsulated drop breakup in shear flow. Phys. Rev. Lett. 93, 204501.
Stone, H. A. & Leal, L. G. 1990 Breakup of concentric double emulsion droplets in linear flows. J. Fluid Mech. 211, 123156.
Sui, Y., Chew, Y. T., Roy, P. & Low, H. T. 2009 Inertia effect on the transient deformation of elastic capsules in simple shear flow. Comput. Fluids 38, 4959.
Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Al-Rawahi, N., Tauber, W., Han, J., Nas, S. & Jan, Y. J. 2001 A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 169, 708759.
Unverdi, S. O. & Tryggvason, G. 1992 A front-tracking method for viscous, incompressible, multi-fluid flows. J. Comput. Phys. 100, 2537.
Veerapaneni, S. K., Young, Y. N., Vlahovska, P. M. & Blawzdziewicz, J. 2011 Dynamics of a compound vesicle in shear flow. Phys. Rev. Lett. 106, 158103.
Walter, J., Salsac, A. V. & Barthes-Biesel, D. 2011 Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shapes. J. Fluid Mech. 676, 318347.
Wang, J., Liu, J., Han, J. & Guan, J. 2013 Effects of complex internal structures on rheology of multiple emulsions particles in 2D from a boundary integral method. Phys. Rev. Lett. 110, 066001.
Yazdani, A. & Bagchi, P. 2012 Three-dimensional numerical simulation of vesicle dynamics using a front-tracking method. Phys. Rev. E 85, 056308.
Yazdani, A. & Bagchi, P. 2013 Influence of membrane viscosity on capsule dynamics in shear flow. J. Fluid Mech. 718, 569595.
Zhao, M. Y. & Bagchi, P. 2011 Dynamics of microcapsules in oscillating shear flow. Phys. Fluids 23, 111901.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Deformation of spherical compound capsules in simple shear flow

  • Zheng Yuan Luo (a1), Long He (a1) and Bo Feng Bai (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed