Skip to main content Accessibility help

Data-driven construction of a reduced-order model for supersonic boundary layer transition

  • Ming Yu (a1), Wei-Xi Huang (a1) and Chun-Xiao Xu (a1)


In this study, a data-driven method for the construction of a reduced-order model (ROM) for complex flows is proposed. The method uses the proper orthogonal decomposition (POD) modes as the orthogonal basis and the dynamic mode decomposition method to obtain linear equations for the temporal evolution coefficients of the modes. This method eliminates the need for the governing equations of the flows involved, and therefore saves the effort of deriving the projected equations and proving their consistency, convergence and stability, as required by the conventional Galerkin projection method, which has been successfully applied to incompressible flows but is hard to extend to compressible flows. Using a sparsity-promoting algorithm, the dimensionality of the ROM is further reduced to a minimum. The ROMs of the natural and bypass transitions of supersonic boundary layers at $Ma=2.25$ are constructed by the proposed data-driven method. The temporal evolution of the POD modes shows good agreement with that obtained by direct numerical simulations in both cases.


Corresponding author

Email address for correspondence:


Hide All
Balajewicz, M., Tezaur, I. & Dowell, E. 2016 Minimal subspace rotation on the Stiefel manifold for stabilization and enhancement of projection-based reduced order models for the compressible Navier–Stokes equations. J. Comput. Phys. 321, 224241.10.1016/
Barone, M. F., Kalashnikova, I., Segalman, D. J. & Thornquist, H. K. 2009 Stable Galerkin reduced order models for linearized compressible flow. J. Comput. Phys. 228 (6), 19321946.10.1016/
Duriez, T., Brunton, S. L. & Noack, B. R. 2017 Machine Learning Control – Taming Nonlinear Dynamics and Turbulence. Springer International.10.1007/978-3-319-40624-4
Gloerfelt, X. 2008 Compressible proper orthogonal decomposition/Galerkin reduced-order model of self-sustained oscillations in a cavity. Phys. Fluids 20 (11), 115105.10.1063/1.2998448
Holmes, P., Lumley, J. L., Berkooz, G. & Rowley, C. W. 2012 Turbulence, Coherent Structures, Dynamical Systems and Symmetry. Cambridge University Press.10.1017/CBO9780511919701
Ilak, M. & Rowley, C. W. 2008 Modeling of transitional channel flow using balanced proper orthogonal decomposition. Phys. Fluids 20 (3), 034103.10.1063/1.2840197
Jovanović, M. R., Schmid, P. J. & Nichols, J. W. 2014 Sparsity-promoting dynamic mode decomposition. Phys. Fluids 26 (2), 024103.10.1063/1.4863670
Kalashnikova, I., Arunajatesan, S., Barone, M. F., van Bloemen Waanders, B. G. & Fike, J. A.2014a Reduced order modeling for prediction and control of large-scale systems. Report, SAND, (2014-4693). Sandia National Laboratories.10.2172/1177206
Kalashnikova, I. & Barone, M. F. 2010 On the stability and convergence of a Galerkin reduced order model (ROM) of compressible flow with solid wall and far-field boundary treatment. Intl J. Numer. Meth. Engng 83 (10), 13451375.10.1002/nme.2867
Kalashnikova, I., Barone, M. F., Arunajatesan, S. & van Bloemen Waanders, B. G. 2014b Construction of energy-stable projection-based reduced order models. Appl. Maths Comput. 249, 569596.10.1016/j.amc.2014.10.073
Kutz, J. N., Fu, X. & Brunton, S. L. 2016 Multiresolution dynamic mode decomposition. SIAM J. Appl. Dyn. Syst. 15 (2), 713735.10.1137/15M1023543
Li, X. L., Fu, D. X., Ma, Y. W. & Liang, X. 2010 Direct numerical simulation of compressible turbulent flows. Acta Mechanica Sin. 26 (6), 795806.10.1007/s10409-010-0394-8
Lumley, J. L. & Poje, A. 1997 Low-dimensional models for flows with density fluctuations. Phys. Fluids 9 (7), 20232031.10.1063/1.869321
Noack, B. R., Papas, P. & Monkewitz, P. A. 2005 The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339365.10.1017/S0022112004002149
Noack, B. R., Stankiewicz, W., Morzyński, M. & Schmid, P. J. 2016 Recursive dynamic mode decomposition of transient and post-transient wake flows. J. Fluid Mech. 809, 843872.10.1017/jfm.2016.678
Pirozzoli, S., Grasso, F. & Gatski, T. B. 2004 Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at M = 2. 25. Phys. Fluids 16 (3), 530545.10.1063/1.1637604
Rowley, C. W. 2005 Model reduction for fluids, using balanced proper orthogonal decomposition. Intl J. Bifurcation Chaos 15 (03), 9971013.10.1142/S0218127405012429
Rowley, C. W., Colonius, T. & Murray, R. M. 2004 Model reduction for compressible flows using POD and Galerkin projection. Physica D: Nonlinear Phenomena 189 (1–2), 115129.10.1016/j.physd.2003.03.001
Rowley, C. W. & Dawson, S. T. 2017 Model reduction for flow analysis and control. Annu. Rev. Fluid Mech. 49, 387417.10.1146/annurev-fluid-010816-060042
Sayadi, T., Schmid, P. J., Nichols, J. W. & Moin, P. 2014 Reduced-order representation of near-wall structures in the late transitional boundary layer. J. Fluid Mech. 748, 278301.10.1017/jfm.2014.184
Schmid, P. J. 2010 Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 656, 528.10.1017/S0022112010001217
Smith, T. R.2003 Low-dimensional models of plane Couette flow using the proper orthogonal decomposition. PhD thesis, Princeton University.
Subbareddy, P. K., Bartkowicz, M. D. & Candler, G. V. 2014 Direct numerical simulation of high-speed transition due to an isolated roughness element. J. Fluid Mech. 748, 848878.10.1017/jfm.2014.204
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Data-driven construction of a reduced-order model for supersonic boundary layer transition

  • Ming Yu (a1), Wei-Xi Huang (a1) and Chun-Xiao Xu (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed