Skip to main content Accessibility help

Computational study of granular shear flows of dry flexible fibres using the discrete element method

  • Y. Guo (a1), C. Wassgren (a2), B. Hancock (a3), W. Ketterhagen (a3) and J. Curtis (a1)...


In this study, shear flows of dry flexible fibres are numerically modelled using the discrete element method (DEM), and the effects of fibre properties on the flow behaviour and solid-phase stresses are explored. In the DEM simulations, a fibre is formed by connecting a number of spheres in a straight line using deformable and elastic bonds. The forces and moments induced by the bond deformation resist the relative normal, tangential, bending and torsional movements between two bonded spheres. The bond or deforming stiffness determines the flexibility of the fibres and the bond damping accounts for the energy dissipation in the fibre vibration. The simulation results show that elastically bonded fibres have smaller effective coefficients of restitution than rigidly connected fibres. Thus, smaller solid-phase stresses are obtained for flexible fibres, particularly with bond damping, compared with rigid fibres. Frictionless fibres tend to align with a small angle from the flow direction as the solid volume fraction increases, and fibre deformation is minimized due to the alignment. However, jamming, with a corresponding sharp stress increase, large fibre deformation and dense contact force network, occurs for fibres with friction at high solid volume fractions. It is also found that jamming is more prevalent in dense flows with larger fibre friction coefficient, rougher surface, larger stiffness and larger aspect ratio.


Corresponding author

Email address for correspondence:


Hide All
Acevedo, M., Zuriguel, I., Maza, D., Pagonabarraga, I., Alonso-Marroquin, F. & Hidalgo, R. C. 2014 Stress transmission in systems of faceted particles in a silo: the roles of filling rate and particle aspect ratio. Granul. Matt. 16, 411420.
Azéma, E. & Radjaï, F. 2010 Stress–strain behavior and geometrical properties of packings of elongated particles. Phys. Rev. E 81, 051304.
Babic, M. 1997 Average balance equations for granular materials. Intl J. Engng Sci. 35 (5), 523548.
Börzsönyi, T., Szabó, B., Törös, G., Wegner, S., Török, J., Somfai, E., Bien, T. & Stannarius, R. 2012a Orientational order and alignment of elongated particles induced by shear. Phys. Rev. Lett. 108, 228302.
Börzsönyi, T., Szabó, B., Wegner, S., Harth, K., Török, J., Somfai, E., Bien, T. & Stannarius, R. 2012b Shear induced alignment and dynamics of elongated granular particles. Phys. Rev. E 86, 051304.
Campbell, C. S. 2002 Granular shear flows at the elastic limit. J. Fluid Mech. 465, 261291.
Campbell, C. S. 2005 Stress-controlled elastic granular shear flows. J. Fluid Mech. 539, 273297.
Campbell, C. S. 2006 Granular material flows – an overview. Powder Technol. 162, 208229.
Campbell, C. S. 2011 Elastic granular flows of ellipsoidal particles. Phys. Fluids 23, 013306.
Campbell, C. S. & Gong, A. 1986 The stress tensor in a two-dimensional granular shear flow. J. Fluid Mech. 164, 107125.
Cleary, P. W. 2008 The effect of particle shape on simple shear flows. Powder Technol. 179, 144163.
Goldhirsch, I. 2010 Stress, stress asymmetry and couple stress: from discrete particles to continuous fields. Granul. Matt. 12, 239252.
Goldhirsch, I. 2003 Rapid granular flows. Annu. Rev. Fluid Mech. 35, 267293.
Goldshtein, A. & Shapiro, M. 1995 Mechanics of collisional motion of granular materials. Part I. General hydrodynamic equations. J. Fluid Mech. 282, 75114.
Guises, R., Xiang, J., Latham, J. P. & Munjiza, A. 2009 Granular packing: numerical simulation and the characterization of the effect of particle shape. Granul. Matt. 11, 281292.
Guo, Y.2010 A coupled DEM/CFD analysis of die filling process. PhD thesis, The University of Birmingham, UK, pp. 40–41.
Guo, Y., Wassgren, C., Hancock, B., Ketterhagen, W. & Curtis, J. 2013a Granular shear flows of flat disks and elongated rods without and with friction. Phys. Fluids 25, 063304.
Guo, Y., Wassgren, C., Hancock, B., Ketterhagen, W. & Curtis, J. 2013b Validation and time step determination of discrete element modeling of flexible fibers. Powder Technol. 249, 386395.
Guo, Y., Wassgren, C., Ketterhagen, W., Hancock, B., James, B. & Curtis, J. 2012 A numerical study of granular shear flows of rod-like particles using the discrete element method. J. Fluid Mech. 713, 126.
Hidalgo, R. C., Zuriguel, I., Maza, D. & Pagonabarraga, I. 2010 Granular packings of elongated faceted particles deposited under gravity. J. Stat. Mech. 2010, P06025.
Hua, X., Curtis, J., Hancock, B., Ketterhagen, W. & Wassgren, C. 2013 The kinematics of non-cohesive, sphero-cylindrical particles in a low-speed, vertical axis mixer. Chem. Engng Sci. 101, 144164.
Huthmann, M., Aspelmeier, T. & Zippelius, A. 1999 Granular cooling of hard needles. Phys. Rev. E 60, 654659.
Jenkins, J. T. 2006 Dense shearing flows of inelastic disks. Phys. Fluids 18, 103307.
Johnson, K. L. 1985 Contact Mechanics. Cambridge University Press.
Johnson, P. C. & Jackson, R. 1987 Frictional-collisional constitutive relations for granular materials with applications to plane shearing. J. Fluid Mech. 176, 6793.
Johnson, P. C., Nott, P. & Jackson, R. 1990 Frictional-collisional equations of motion for particulate flows and their applications to plane shearing. J. Fluid Mech. 210, 501535.
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441, 727730.
Ketterhagen, W., Curtis, J., Wassgren, C. & Hancock, B. 2009 Predicting the flow mode from hoppers using the discrete element method. Powder Technol. 195, 110.
Langston, P., Kennedy, A. R. & Constantin, H. 2015 Discrete element modeling of flexible fibre packing. Comput. Mater. Sci. 96, 108116.
Lavenson, D. M., Tozzi, E. J., McCarthy, M. J. & Powell, R. L. 2011 Yield stress of pretreated corn stover suspensions using magnetic resonance imaging. Biotechnol. Bioengng 108, 23122319.
Lees, A. W. & Edwards, S. F. 1972 The computer study of transport processes under extreme conditions. J. Phys. C: Solid State Phys. 5, 19211929.
Lindstrom, S. B. & Uesaka, T. 2007 Simulation of the motion of flexible fibers in viscous fluid flow. Phys. Fluids 19, 113307.
Lumay, G. & Vandewalle, N. 2006 Experimental study of the compaction dynamics for two-dimensional anisotropic granular materials. Phys. Rev. E 74, 021301.
Lun, C. K. K., Savage, S. B., Jeffrey, D. J. & Chepurniy, N. 1984 Kinetic theories for granular flow: inelastic particles in Couette flow and slightly inelastic particles in a general flow field. J. Fluid Mech. 140, 223256.
Montanero, J. M., Garzo, V., Santos, A. & Brey, J. J. 1999 Kinetic theory of simple granular shear flows of smooth hard spheres. J. Fluid Mech. 389, 391411.
Ning, Z. & Melrose, J. R. 1999 A numerical model for simulating mechanical behavior of flexible fibers. J. Chem. Phys. 111, 1071710726.
Peña, A. A., García-Rojo, R. & Herrmann, H. J. 2007 Influence of particle shape on sheared dense granular media. Granul. Matt. 9, 279291.
Potyondy, D. O. & Cundall, P. A. 2004 A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41, 13291364.
Pouliquen, O. & Forterre, Y. 2009 A non-local rheology for dense granular flows. Phil. Trans. R. Soc. Lond. A 367, 50915107.
Reddy, K. A., Kumaran, V. & Talbot, J. 2009 Orientational ordering in sheared inelastic dumbbells. Phys. Rev. E 80, 031304.
Ross, R. F. & Klingenberg, D. J. 1997 Dynamic simulation of flexible fibers composed of linked rigid bodies. J. Chem. Phys. 106, 29492960.
Stickel, J. J., Knutsen, J. S., Liberatore, M. W., Luu, W., Bousfield, D. W., Klingenberg, D. J., Scott, C. T., Root, T. W., Ehrhardt, M. R. & Monz, T. O. 2009 Rheology measurements of a biomass slurry: an inter-laboratory study. Rheol. Acta 48, 10051015.
Suiker, A. S. & Fleck, N. A. 2004 Frictional collapse of granular assemblies. Trans. ASME J. Appl. Mech. 71, 350358.
Thornton, C. 2000 Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50, 4353.
Thornton, C. & Yin, K. K. 1991 Impact of elastic spheres with and without adhesion. Powder Technol. 65, 153165.
Wegner, S., Stannarius, R., Boese, A., Rose, G., Szabo, B., Somfai, E. & Borzsonyi, T. 2014 Effects of grain shape on packing and dilatancy of sheared granular materials. Soft Matt. 10, 51575167.
Weinhart, T., Hartkamp, R., Thornton, A. R. & Luding, S. 2013 Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluids 25, 070605.
Weinhart, T., Thornton, A. R., Luding, S. & Bokhove, O. 2012 From discrete particles to continuum fields near a boundary. Granul. Matt. 14, 289294.
Wouterse, A., Luding, S. & Philipse, A. P. 2009 On contact numbers in random rod packings. Granul. Matt. 11, 169177.
Wu, J. & Aidun, C. K. 2010 A method for direct simulation of flexible fiber suspensions using lattice Boltzmann equation with external boundary force. Intl J. Multiphase Flow 36, 202209.
Yamamoto, S. & Matsuoka, T. 1993 A method for dynamic simulation of rigid and flexible fibers in a flow field. J. Chem. Phys. 98, 644650.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed