Skip to main content Accessibility help
×
Home

Atwood ratio dependence of Richtmyer–Meshkov flows under reshock conditions using large-eddy simulations

  • M. LOMBARDINI (a1), D. J. HILL (a1), D. I. PULLIN (a1) and D. I. MEIRON (a1)

Abstract

We study the shock-driven turbulent mixing that occurs when a perturbed planar density interface is impacted by a planar shock wave of moderate strength and subsequently reshocked. The present work is a systematic study of the influence of the relative molecular weights of the gases in the form of the initial Atwood ratio A. We investigate the cases A = ± 0.21, ±0.67 and ±0.87 that correspond to the realistic gas combinations air–CO2, air–SF6 and H2–air. A canonical, three-dimensional numerical experiment, using the large-eddy simulation technique with an explicit subgrid model, reproduces the interaction within a shock tube with an endwall where the incident shock Mach number is ~1.5 and the initial interface perturbation has a fixed dominant wavelength and a fixed amplitude-to-wavelength ratio ~0.1. For positive Atwood configurations, the reshock is followed by secondary waves in the form of alternate expansion and compression waves travelling between the endwall and the mixing zone. These reverberations are shown to intensify turbulent kinetic energy and dissipation across the mixing zone. In contrast, negative Atwood number configurations produce multiple secondary reshocks following the primary reshock, and their effect on the mixing region is less pronounced. As the magnitude of A is increased, the mixing zone tends to evolve less symmetrically. The mixing zone growth rate following the primary reshock approaches a linear evolution prior to the secondary wave interactions. When considering the full range of examined Atwood numbers, measurements of this growth rate do not agree well with predictions of existing analytic reshock models such as the model by Mikaelian (Physica D, vol. 36, 1989, p. 343). Accordingly, we propose an empirical formula and also a semi-analytical, impulsive model based on a diffuse-interface approach to describe the A-dependence of the post-reshock growth rate.

Copyright

Corresponding author

Email address for correspondence: manuel@caltech.edu

References

Hide All
Alon, U., Hecht, J., Ofer, D. & Shvarts, D. 1995 Power laws and similarity of Rayleigh–Taylor and Richtmyer–Meshkov mixing fronts at all density ratios. Phys. Rev. Lett. 74 (4), 534537.
Andronov, V. A., Bakhrakh, S. M., Meshkov, E. E., Mokhov, V. N., Nikiforov, V. V., Pevnitskii, A. V. & Tolshmyakov, A. I. 1976 Turbulent mixing at contact surface accelerated by shock waves. Sov. Phys. JETP 44 (2), 424427.
Arnett, D., Bahcall, J. N., Kirshner, R. P. & Woosler, S. E. 1989 Supernova 1987A. Annu. Rev. Astron. Astrophys. 27, 629700.
Berger, M. J. & Colella, P. 1989 Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82 (1), 6484.
Berger, M. J. & Oliger, J. 1984 Adaptive mesh refinement for hyperbolic partial-differential equations. J. Comput. Phys. 53 (3), 484512.
Blaisdell, G. A. 1991 Numerical simulation of compressible homogeneous turbulence. PhD thesis, Stanford University.
Bond, C., Hill, D. J., Meiron, D. I. & Dimotakis, P. E. 2009 Shock structure in a planar convergent geometry with experiment and simulation. J. Fluid Mech. 641, 297333.
Brouillette, M. & Sturtevant, B. 1989 Growth induced by multiple shock waves normally incident on plane gaseous interfaces. Physica D 37, 248263.
Brouillette, M. & Sturtevant, B. 1993 Experiments on the Richtmyer–Meshkov instability: small-scale perturbations on a plane interface. Phys. Fluids A 5 (4), 916930.
Brouillette, M. & Sturtevant, B. 1994 Experiments on the Richtmyer–Meshkov instability: single-scale perturbations on a continuous interface. J. Fluid Mech. 263, 271292.
Burrows, A., Hayes, J. & Fryxell, B. A. 1995 On the nature of core-collapse supernova explosions. Astrophys. J. 450, 830850.
Canuto, V. M. & Goldman, I. 1985 Analytical model for large-scale turbulence. Phys. Rev. Lett. 54 (5), 430433.
Charakhchyan, A. A. 2001 Reshocking at the non-linear stage of Richtmyer–Meshkov instability. Plasma Phys. Control. Fusion 43, 11691179.
Collins, B. D. & Jacobs, J. W. 2002 PLIF flow visualization and measurements of the Richtmyer–Meshkov instability of an air/SF6 interface. J. Fluid Mech. 464, 113136.
Deiterding, R. 2005 Construction and application of an AMR algorithm for distributed memory computers. In Adaptive Mesh Refinement: Theory and Applications (ed. Plewa, T., Linde, T. & Weirs, V. G.), pp. 361372. Lecture Notes in Computational Science and Engineering, vol. 41. Springer.
Deiterding, R., Radovitzky, R., Mauch, S. P., Noels, L., Cummings, J. C. & Meiron, D. I. 2006 A virtual test facility for the efficient simulation of solid material response under strong shock and detonation wave loading. Engng Comput. 22 (3–4), 325347.
Dimonte, G. 2004 Dependence of turbulent Rayleigh-Taylor instability on initial perturbations. Phys. Rev. E 69, 056305 (114).
Dimonte, G., Ramaprabhu, P. & Andrews, M. 2007 Rayleigh–Taylor instability with complex acceleration history. Phys. Rev. E 76, 046313 (16).
Dimonte, G. & Schneider, M. 2000 Density ratio dependence of Rayleigh–Taylor mixing for sustained and impulsive acceleration histories. Phys. Fluids 12 (2), 304321.
Dimotakis, P. E. 2000 The mixing transition in turbulent flows. J. Fluid Mech. 409, 6997.
Duff, R. E., Harlow, F. H. & Hirt, C. W. 1962 Effects of diffusion on interface instability between gases. Phys. Fluids 5, 417425.
Erez, L., Sadot, O., Oron, D., Erez, G., Levin, L. A., Shvarts, D. & Ben-Dor, G. 2000 Study of the membrane effect on turbulent mixing measurements in shock tubes. Shock Waves 10 (4), 241251.
Ghosal, S. 1996 An analysis of numerical errors in large-eddy simulations of turbulence. J. Comput. Phys. 125 (1), 187206.
Ghosal, S. 1999 Mathematical and physical constraints on large-eddy simulation of turbulence. AIAA J. 37 (4), 425433.
Giordano, J. & Burtschell, Y. 2006 Richtmyer–Meshkov instability induced by shock–bubble interaction: numerical and analytical studies with experimental validation. Phys. Fluids 18 (3), 036102.
Gottlieb, S., Shu, C.-W. & Tadmor, E. 2001 Strong stability-preserving high-order time discretization methods. SIAM Rev. 43 (1), 89112.
Greenough, J. A. & Burke, E. 2004 The effect of initial conditions on late time asymptotics and mixing for multimode Richtmyer–Meshov instability. In Ninth International Workshop on the Physics of Compressible Turbulent Mixing, 19–23 July, Cambridge, UK.
Gupta, M. R., Roy, S., Sarkar, S., Khan, M., Pant, H. C. & Srivastava, M. K. 2007 Effect on Richtmyer–Meshkov instability of deviation from sinusoidality of the corrugated interface between two fluids. Laser Part. Beams 25, 503510.
Gutmark, E. & Wygnanski, I. 1976 The planar turbulent jet. J. Fluid Mech. 73 (3), 465495.
Hill, D. J., Pantano, C. & Pullin, D. I. 2006 Large-eddy simulation and multi-scale modeling of Richtmyer–Meshkov instability with reshock. J. Fluid Mech. 557, 2961.
Hill, D. J. & Pullin, D. I. 2004 Hybrid tuned center-difference-WENO method for large eddy simulations in the presence of strong shocks. J. Comput. Phys. 194 (2), 435450.
Holmes, R. L., Dimonte, G., Fryxell, B., Gittings, M. L., Grove, J. W., Schneider, M., Sharp, D. H., Velikovich, A. L., Weaver, R. P. & Zhang, Q. 1999 Richtmyer–Meshkov instability growth: experiment, simulation and theory. J. Fluid Mech. 389, 5579.
Honein, A. E. & Moin, P. 2004 Higher entropy conservation and numerical stability of compressible turbulence simulations. J. Comput. Phys. 201 (2), 531545.
Houas, L. & Chemouni, I. 1996 Experimental investigation of Richtmyer–Meshkov instability in shock tube. Phys. Fluids 8 (2), 614627.
Kosovic, B., Pullin, D. I. & Samtaney, R. 2002 Subgrid-scale modeling for large-eddy simulations of compressible turbulence. Phys. Fluids 14 (4), 15111522.
Latini, M., Schilling, O. & Don, W. S. 2007 Effects of WENO flux reconstruction order and spatial resolution on reshocked two-dimensional Richtmyer–Meshkov instability. J. Comput. Phys. 221 (2), 805836.
Layes, G., Jourdan, G. & Houas, L. 2009 Experimental study on a plane shock wave accelerating a gas bubble. Phys. Fluids 21 (7), 074102.
Leinov, E., Malamud, G., Elbaz, Y., Levin, L. A., Ben-Dor, G., Shvarts, D. & Sadot, O. 2009 Experimental and numerical investigation of the Richtmyer–Meshkov instability under re-shock conditions. J. Fluid Mech. 626, 449475.
Lindl, J. D., McCrory, R. L. & Campbell, E. M. 1992 Progress towards ignition and burn propagation in inertial confinement fusion. Phys. Today 45, 3240.
Lombardini, M. 2008 Richtmyer–Meshkov instability in converging geometries. PhD thesis, Caltech.
Lombardini, M., Deiterding, R. & Pullin, D. I. 2008 Large-eddy simulation of the Richtmyer–Meshkov instability in a converging geometry. In Quality and Reliability of Large-Eddy Simulations, Proc. of QLES 2007 Intl Symposium (ed. Meyers, J., Geurts, B. J. & Sagaut, P.), ERCOFTAC Series, vol. 12, pp. 2351. Springer.
Lombardini, M. & Pullin, D. I. 2009 Startup process in the Richtmyer–Meshkov instability. Phys. Fluids 21 (4), 044104.
Lundgren, T. S. 1982 Strained spiral vortex model for turbulence fine structure. Phys. Fluids 25 (12), 21932203.
Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Sov. Fluid Dyn. 4 (5), 101108.
Mikaelian, K. O. 1989 Turbulent mixing generated by Rayleigh–Taylor and Richtmyer–Meshkov instabilities. Physica D 36, 343347.
Mikaelian, K. O. 1991 Density gradient stabilization of the Richtmyer–Meshkov instability. Phys. Fluids A 3 (11), 26382643.
Mikaelian, K. O. 2009 Reshocks, rarefactions, and the generalized Layzer model for hydrodynamic instabilities. Phys. Fluids 21 (2), 024103.
Misra, A. & Pullin, D. I. 1997 A vortex-based model for large-eddy simulation. Phys. Fluids 9 (8), 24432454.
Moeleker, P. & Leonard, A. 2001 Lagrangian methods for the tensor-diffusivity subgrid model. J. Comput. Phys. 167 (1), 121.
Motl, B., Oakley, J., Ranjan, D., Weber, C., Anderson, M. & Bonazza, R. 2009 Experimental validation of a Richtmyer–Meshkov scaling law over large density ratio and shock strength ranges. Phys. Fluids 21 (12), 126102.
Niederhaus, J. H. J., Greenough, J. A., Oakley, J. G., Ranjan, D., Anderson, M. H. & Bonazza, R. 2008 A computational parameter study for the three-dimensional shock–bubble interaction. J. Fluid Mech. 594, 85124.
Orlicz, G. C., Balakumar, B. J., Tomkins, C. D. & Prestridge, K. P. 2009 A Mach number study of the Richtmyer–Meshkov instability in a varicose, heavy-gas curtain. Phys. Fluids 21 (6), 064102.
Oron, D., Arazi, L., Kartoon, D., Rikanati, A., Alon, U. & Shvarts, D. 2001 Dimensionality dependence of the Rayleigh–Taylor and Richtmyer–Meshkov instability late-time scaling laws. Phys. Plasmas 8 (6), 28832889.
Pantano, C., Deiterding, R., Hill, D. J. & Pullin, D. I. 2007 A low numerical dissipation patch-based adaptive mesh refinement method for large-eddy simulation of compressible flows. J. Comput. Phys. 221 (1), 6387.
Pullin, D. I. 2000 A vortex-based model for the subgrid flux of a passive scalar. Phys. Fluids 12 (9), 23112319.
Read, K. I. 1984 Experimental investigation of turbulent mixing by Rayleigh–Taylor instability. Physica D 12, 4558.
Reid, R. C., Prausnitz, J. M. & Polling, B. E. 1987 The Properties of Gases and Liquids. McGraw-Hill.
Richtmyer, R. D. 1960 Taylor instability in shock acceleration of compressible fluids. Commun. Pure Appl. Maths. 13, 297319.
Saffman, P. G. & Meiron, D. I. 1989 Kinetic energy generated by the incompressible Richtmyer–Meshkov instability in a continuously stratified fluid. Phys. Fluids A 1 (11), 17671771.
Samtaney, R. & Zabusky, N. J. 1993 Circulation deposition on shock-accelerated planar and curved density-stratified interfaces: models and scaling laws. J. Fluid Mech. 269, 4578.
Schilling, O., Latini, M. & Don, W. S. 2007 Physics of reshock and mixing in single-mode Richtmyer–Meshkov instability. Phys. Rev. E 76, 026319.
Taccetti, J. M., Batha, S. H., Fincke, J. R., Delamater, N. D., Lanier, N. E., Magelssen, G. R., Hueckstaedt, R. M., Rothman, S. D., Horsfield, C. J. & Parker, K. W. 2005 Richtmyer–Meshkov instability reshock experiments using laser-driven double-cylinder implosions. Astrophys. Space Sci. 298, 327331.
Tomkins, C., Kumar, S., Orlicz, G. & Prestridge, K. 2008 An experimental investigation of mixing mechanisms in shock-accelerated flow. J. Fluid Mech. 611, 131150.
Vetter, M. & Sturtevant, B. 1995 Experiments on the Richtmyer–Meshkov instability of an air/SF6 interface. Shock Waves 4, 247252.
Voelkl, T. & Pullin, D. I. 2000 A physical-space version of the stretched-vortex subgrid-stress model for large-eddy simulations. Phys. Fluids 12 (7), 18101825.
Youngs, D. L. 1984 Numerical simulation of turbulent mixing by Rayleigh–Taylor instability. Physica D 12, 3244.
Zabusky, N. J. 1999 Vortex paradigm for accelerated inhomogeneous flows: visiometrics for the Rayleigh–Taylor and Richtmyer–Meshkov environments. Annu. Rev. Fluid Mech. 31, 495536.
Zaitsev, S. V., Lazareva, E. V., Chernukha, V. V. & Belyaev, V. M. 1985 An experimental investigation and numerical modeling of turbulent mixing in one-dimensional flows. Sov. Phys. Dokl. 30, 579.
Zhang, T. A., Dahlburg, R. B. & Dahlburg, J. P. 1992 Direct and large-eddy simulations of three-dimensional compressible Navier–Stokes turbulence. Phys. Fluids A 4, 127140.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Atwood ratio dependence of Richtmyer–Meshkov flows under reshock conditions using large-eddy simulations

  • M. LOMBARDINI (a1), D. J. HILL (a1), D. I. PULLIN (a1) and D. I. MEIRON (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed