Skip to main content Accessibility help
×
Home
Hostname: page-component-77ffc5d9c7-kttml Total loading time: 0.234 Render date: 2021-04-23T18:22:08.017Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Walking droplets interacting with single and double slits

Published online by Cambridge University Press:  01 December 2017

Giuseppe Pucci
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA The Hatter Department of Marine Technologies, University of Haifa, Haifa, Israel
Daniel M. Harris
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA School of Engineering, Brown University, Providence, RI 02912, USA
Luiz M. Faria
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
John W. M. Bush
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Corresponding
E-mail address:

Abstract

Couder & Fort (Phys. Rev. Lett., vol. 97, 2006, 154101) demonstrated that when a droplet walking on the surface of a vibrating bath passes through a single or a double slit, it is deflected due to the distortion of its guiding wave field. Moreover, they suggested the build-up of statistical diffraction and interference patterns similar to those arising for quantum particles. Recently, these results have been revisited (Andersen et al., Phys. Rev. E, vol. 92 (1), 2015, 013006; Batelaan et al., J. Phys.: Conf. Ser., vol. 701 (1), 2016, 012007) and contested (Andersen et al. 2015; Bohr, Andersen & Lautrup, Recent Advances in Fluid Dynamics with Environmental Applications, 2016, Springer, pp. 335–349). We revisit these experiments with a refined experimental set-up that allows us to systematically characterize the dependence of the dynamical and statistical behaviour on the system parameters. The system behaviour is shown to depend strongly on the amplitude of the vibrational forcing: as this forcing increases, a transition from repeatable to unpredictable trajectories arises. In all cases considered, the system behaviour is dominated by a wall effect, specifically the tendency for a drop to walk along a path that makes a fixed angle relative to the plane of the slits. While the three dominant central peaks apparent in the histograms of the deflection angle reported by Couder & Fort (2006) are evident in some of the parameter regimes considered in our study, the Fraunhofer-like dependence of the number of peaks on the slit width is not recovered. In the double-slit geometry, the droplet is influenced by both slits by virtue of the spatial extent of its guiding wave field. The experimental behaviour is well captured by a recently developed theoretical model that allows for a robust treatment of walking droplets interacting with boundaries. Our study underscores the importance of experimental precision in obtaining reproducible data.

Type
JFM Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Aharonov, Y., Cohen, E., Colombo, F., Landsberger, T., Sabadini, I., Struppa, D. C. & Tollaksen, J. 2017 Finally making sense of the double-slit experiment. Proc. Natl Acad. Sci. USA 114 (25), 64806485.CrossRefGoogle ScholarPubMed
Andersen, A., Madsen, J., Reichelt, C., Ahl, S. R., Lautrup, B., Ellegaard, C., Levinsen, M. T. & Bohr, T. 2015 Double-slit experiment with single wave-driven particles and its relation to quantum mechanics. Phys. Rev. E 92 (1), 013006.Google ScholarPubMed
Bach, R., Pope, D., Liou, S.-H. & Batelaan, H. 2013 Controlled double-slit electron diffraction. New J. Phys. 15, 033018.Google Scholar
Batelaan, H., Jones, E., Huang, W. C.-W. & Bach, R. 2016 Momentum exchange in the electron double-slit experiment. J. Phys.: Conf. Ser. 701 (1), 012007.Google Scholar
Bechhoefer, J., Ego, B., Manneville, S. & Johnson, B. 1995 An experimental study of the onset of parametrically pumped surface waves in viscous fluids. J. Fluid Mech. 288, 325350.CrossRefGoogle Scholar
Bell, J. S. 1987 Speakable and Unspeakable in Quantum Mechanics. Cambridge University Press.Google Scholar
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225, 505515.CrossRefGoogle Scholar
Blanchette, F. 2016 Modeling the vertical motion of drops bouncing on a bounded fluid reservoir. Phys. Fluids 28 (3), 032104.CrossRefGoogle Scholar
Bohr, T., Andersen, A. & Lautrup, B. 2016 Bouncing droplets, pilot-waves, and quantum mechanics. In Recent Advances in Fluid Dynamics with Environmental Applications (ed. Klapp, J. et al. ), pp. 335349. Springer.CrossRefGoogle Scholar
Born, M. & Wolf, E. 2000 Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. CUP Archive.Google Scholar
de Broglie, L. 1924 Recherches sur la théorie des quanta. Masson, Paris.Google Scholar
de Broglie, L. 1926 Interference and corpuscular light. Nature 118, 441442.CrossRefGoogle Scholar
de Broglie, L. 1960 Non-Linear Wave Mechanics: A Causal Interpretation. Elsevier.Google Scholar
de Broglie, L. 1987 Interpretation of quantum mechanics by the double solution theory. Ann. Fond. Louis Broglie (on-line) 12, 123.Google Scholar
Bush, J. W. M. 2015 Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47, 269292.CrossRefGoogle Scholar
Carmigniani, R., Lapointe, S., Symon, S. & McKeon, B. J. 2014 Influence of a local change of depth on the behavior of walking oil drops. Exp. Therm. Fluid Sci. 54, 237246.CrossRefGoogle Scholar
Couder, Y. & Fort, E. 2006 Single-particle diffraction and interference at a macroscopic scale. Phys. Rev. Lett. 97, 154101.CrossRefGoogle Scholar
Couder, Y. & Fort, E. 2012 Probabilities and trajectories in a classical wave–particle duality. J. Phys.: Conf. Ser. 361, 012001.Google Scholar
Couder, Y., Protière, S., Fort, E. & Boudaoud, A. 2005 Walking and orbiting droplets. Nature 437, 208.CrossRefGoogle ScholarPubMed
Davisson, C. & Germer, L. H. 1927 The scattering of electrons by a single crystal of nickel. Nature 119 (2998), 558560.CrossRefGoogle Scholar
Dubertrand, R., Hubert, M., Schlagheck, P., Vandewalle, N., Bastin, T. & Martin, J. 2016 Scattering theory of walking droplets in the presence of obstacles. New J. Phys. 18 (11), 113037.Google Scholar
Durey, M. & Milewski, P. A. 2017 Faraday wave–droplet dynamics: discrete-time analysis. J. Fluid Mech. 821, 296329.CrossRefGoogle Scholar
Eddi, A., Fort, E., Moisy, F. & Couder, Y. 2009 Unpredictable tunneling of a classical wave–particle association. Phys. Rev. Lett. 102, 240401.CrossRefGoogle ScholarPubMed
Eddi, A., Moukhtar, J., Perrard, S., Fort, E. & Couder, Y. 2012 Level splitting at macroscopic scale. Phys. Rev. Lett. 108, 264503.CrossRefGoogle ScholarPubMed
Eddi, A., Sultan, E., Moukhtar, J., Fort, E., Rossi, M. & Couder, Y. 2011 Information stored in Faraday waves: the origin of path memory. J. Fluid Mech. 674, 433463.CrossRefGoogle Scholar
Eddi, A., Terwagne, D., Fort, E. & Couder, Y. 2008 Wave propelled ratchets and drifting rafts. Europhys. Lett. 82, 44001.CrossRefGoogle Scholar
Einstein, A. 1905 Uber einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 17 (6), 132148.CrossRefGoogle Scholar
Faraday, M. 1831 On the forms and states of fluids on vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 319340.Google Scholar
Faria, L. M. 2017 A model for Faraday pilot waves over variable topography. J. Fluid Mech. 811, 5166.CrossRefGoogle Scholar
Feynman, R. P., Leighton, R. B. & Sands, M. 1963 The Feynman Lectures on Physics. Addison Wesley.Google Scholar
Filoux, B., Hubert, M., Schlagheck, P. & Vandewalle, N. 2017 Walking droplets in linear channels. Phys. Rev. Fluids 2 (1), 013601.CrossRefGoogle Scholar
Fort, E., Eddi, A., Boudaoud, A., Moukhtar, J. & Couder, Y. 2010 Path-memory induced quantization of classical orbits. Proc. Natl Acad. Sci. USA 107 (41), 1751517520.CrossRefGoogle Scholar
Gilet, T. 2014 Dynamics and statistics of wave–particle interactions in a confined geometry. Phys. Rev. E 90 (5), 052917.Google Scholar
Gilet, T. & Bush, J. W. M. 2012 Droplets bouncing on a wet, inclined surface. Phys. Fluids 24 (12), 122103.CrossRefGoogle Scholar
Grimaldi, F. M. 1665 Physico-mathesis de lumine, coloribus, et iride, aliisque adnexis libri duo. Kessinger Publishing, LLC (26 August 2009).Google Scholar
Harris, D.2015 The pilot-wave dynamics of walking droplets in confinement. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Harris, D. M. & Bush, J. W. M. 2014 Droplets walking in a rotating frame: from quantized orbits to multimodal statistics. J. Fluid Mech. 739, 444464.CrossRefGoogle Scholar
Harris, D. M. & Bush, J. W. M. 2015 Generating uniaxial vibration with an electrodynamic shaker and external air bearing. J. Sound Vib. 334, 255269.CrossRefGoogle Scholar
Harris, D. M., Liu, T. & Bush, J. W. M. 2015 A low-cost, precise piezoelectric droplet-on-demand generator. Exp. Fluids 56 (4), 17.CrossRefGoogle Scholar
Harris, D. M., Moukhtar, J., Fort, E., Couder, Y. & Bush, J. W. M. 2013 Wavelike statistics from pilot-wave dynamics in a circular corral. Phys. Rev. E 88, 011001.Google Scholar
Jönsson, C. 1961 Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Z. Phys. A 161 (4), 454474.Google Scholar
Kapitza, P. L. & Dirac, P. A. M. 1933 The reflection of electrons from standing light waves. Math. Proc. Camb. Phil. Soc. 29, 297300.CrossRefGoogle Scholar
Kocsis, S., Braverman, B., Ravets, S., Stevens, M. J., Mirin, R. P., Shalm, L. K. & Steinberg, A. M. 2011 Observing the average trajectories of single photons in a two-slit interferometer. Science 332 (6034), 11701173.CrossRefGoogle Scholar
Labousse, M., Oza, A. U., Perrard, S. & Bush, J. W. M. 2016a Pilot-wave dynamics in a harmonic potential: quantization and stability of circular orbits. Phys. Rev. E 93 (3), 033122.Google Scholar
Labousse, M., Perrard, S., Couder, Y. & Fort, E. 2014 Build-up of macroscopic eigenstates in a memory-based constrained system. New J. Phys. 16 (11), 113027.Google Scholar
Labousse, M., Perrard, S., Couder, Y. & Fort, E. 2016b Self-attraction into spinning eigenstates of a mobile wave source by its emission back-reaction. Phys. Rev. E 94 (4), 063017.Google Scholar
Milewski, P. A., Galeano-Rios, C. A., Nachbin, A. & Bush, J. W. M. 2015 Faraday pilot-wave dynamics: modelling and computation. J. Fluid Mech. 778, 361388.CrossRefGoogle Scholar
Moláček, J. & Bush, J. W. M. 2013a Drops bouncing on a vibrating bath. J. Fluid Mech. 727, 582611.CrossRefGoogle Scholar
Moláček, J. & Bush, J. W. M. 2013b Drops walking on a vibrating bath: towards a hydrodynamic pilot-wave theory. J. Fluid Mech. 727, 612647.CrossRefGoogle Scholar
Nachbin, A., Milewski, P. A. & Bush, J. W. M. 2017 Tunneling with a hydrodynamic pilot-wave model. Phys. Rev. Fluids 2 (3), 034801.CrossRefGoogle Scholar
Oza, A. U., Harris, D. M., Rosales, R. R. & Bush, J. W. M. 2014a Pilot-wave dynamics in a rotating frame: on the emergence of orbital quantization. J. Fluid Mech. 744, 404429.CrossRefGoogle Scholar
Oza, A. U., Rosales, R. R. & Bush, J. W. M. 2013 A trajectory equation for walking droplets: hydrodynamic pilot-wave theory. J. Fluid Mech. 737, 552570.CrossRefGoogle Scholar
Oza, A. U., Wind-Willassen, Ø., Harris, D. M., Rosales, R. R. & Bush, J. W. M. 2014b Pilot-wave hydrodynamics in a rotating frame: exotic orbits. Phys. Fluids 26 (8), 082101.CrossRefGoogle Scholar
Perrard, S., Labousse, M., Miskin, M., Fort, E. & Couder, Y. 2014 Self-organization into quantized eigenstates of a classical wave-driven particle. Nat. Commun. 5, 3219.CrossRefGoogle ScholarPubMed
Planck, M. 1901 Ueber das Gesetz der Energieverteilung im Normalspectrum. Ann. Phys. 4, 553.CrossRefGoogle Scholar
Protière, S., Boudaoud, A. & Couder, Y. 2006 Particle–wave association on a fluid interface. J. Fluid Mech. 554, 85108.CrossRefGoogle Scholar
Pucci, G., Sáenz, P. J., Faria, L. M. & Bush, J. W. M. 2016 Non-specular reflection of walking droplets. J. Fluid Mech. 804, R3.CrossRefGoogle Scholar
Sáenz, P. J. S., Cristea-Platon, T. & Bush, J. W. M. 2017 Statistical projection effects in a hydrodynamic pilot-wave system. Nat. Phys. (in press) doi:10.1038/s41567-017-0003-x.Google Scholar
Taylor, G. I. 1909 Interference fringes with feeble light. Proc. Camb. Phil. Soc. 15, 114115.Google Scholar
Tonomura, A., Endo, J., Matsuda, T. & Kawasaki, T. 1989 Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 57 (2), 117120.CrossRefGoogle Scholar
Tsuchiya, Y., Inuzuka, E., Kurono, T. & Hosoda, M. 1985 Photon-counting imaging and its application. Adv. Electron. El. Phys. 64, 2131.CrossRefGoogle Scholar
Wind-Willassen, Ø., Moláček, J., Harris, D. M. & Bush, J. W. M. 2013 Bouncing and walking drops: exotic and mixed modes. Phys. Fluids 25, 082002.CrossRefGoogle Scholar

Pucci et al. supplementary movie 1

See Movie captions pdf for description

Video 5 MB

Pucci et al. supplementary movie captions

Movie descriptions

PDF 77 KB

Pucci et al. supplementary movie 2

See Movie captions pdf for description

Video 10 MB

Pucci et al. supplementary movie 3

See Movie captions pdf for description

Video 2 MB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 121
Total number of PDF views: 665 *
View data table for this chart

* Views captured on Cambridge Core between 01st December 2017 - 23rd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Walking droplets interacting with single and double slits
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Walking droplets interacting with single and double slits
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Walking droplets interacting with single and double slits
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *