Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-12-08T12:07:36.308Z Has data issue: false hasContentIssue false

Buoyancy-induced turbulence in a tilted pipe

Published online by Cambridge University Press:  08 December 2014

Yannick Hallez
Affiliation:
Université de Toulouse; INPT, UPS; LGC (Laboratoire de Génie Chimique); 118 route de Narbonne, F-31062 Toulouse, France CNRS; LGC; F-31030 Toulouse, France
Jacques Magnaudet*
Affiliation:
Université de Toulouse; INPT, UPS; IMFT (Institut de Mécanique des Fluides de Toulouse); Allée Camille Soula, F-31400 Toulouse, France CNRS; IMFT; F-31400 Toulouse, France
*
Email address for correspondence: magnau@imft.fr

Abstract

Numerical simulation is used to document the statistical structure and better understand energy transfers in a low-Reynolds-number turbulent flow generated by negative axial buoyancy in a long circular tilted pipe under the Boussinesq approximation. The flow is found to exhibit specific features which strikingly contrast with the familiar characteristics of pressure-driven pipe and channel flows. The mean flow, dominated by an axial component exhibiting a uniform shear in the core, also comprises a weak secondary component made of four counter-rotating cells filling the entire cross-section. Within the cross-section, variations of the axial and transverse velocity fluctuations are markedly different, the former reaching its maximum at the edge of the core while the latter two decrease monotonically from the axis to the wall. The negative axial buoyancy component generates long plumes travelling along the pipe, yielding unusually large longitudinal integral length scales. The axial and crosswise mean density variations are shown to be respectively responsible for a quadratic variation of the crosswise shear stress and density flux which both decrease from a maximum on the pipe axis to near-zero values throughout the near-wall region. Although the crosswise buoyancy component is stabilizing everywhere, the crosswise density flux is negative in some peripheral regions, which corresponds to apparent counter-gradient diffusion. Budgets of velocity and density fluctuations variances and of crosswise shear stress and density flux are analysed to explain the above features. A novel two-time algebraic model of the turbulent fluxes is introduced to determine all components of the diffusivity tensor, revealing that they are significantly influenced by axial and crosswise buoyancy effects. The eddy viscosity and eddy diffusivity concepts and the Reynolds analogy are found to work reasonably well within the central part of the section whereas non-local effects cannot be ignored elsewhere.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Banerjee, A., Kraft, W. N. & Andrews, M. J. 2010 Detailed measurements of a statistically steady Rayleigh–Taylor mixing layer from small to high Atwood numbers. J. Fluid Mech. 659, 127190.Google Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Batchelor, G. K. 1959 Small-scale variation of convected quantities like temperature in turbulent fluid. Part 1. General discussion and the case of small conductivity. J. Fluid Mech. 5, 113133.Google Scholar
Boris, J. P., Grinstein, F. F., Oran, E. S. & Kolbe, R. J. 1992 New insights into large eddy simulation. Fluid Dyn. Res. 10, 199228.Google Scholar
Boudjemadi, R., Maupu, V., Laurence, D. & Le Quéré, P. 1997 Budgets of turbulent stresses and fluxes in a vertical slot natural convection flow at Rayleigh $\mathit{Ra}=10^{5}$ and $5.4\ast 10^{5}$ . Intl J. Heat Fluid Flow 18, 7079.Google Scholar
Cabot, W. & Zhou, Y. 2013 Statistical measurements of scaling and anisotropy of turbulent flows induced by Rayleigh–Taylor instability. Phys. Fluids 25, 015107.Google Scholar
Champagne, F. H., Harris, V. G. & Corrsin, S. 1970 Experiments on nearly homogeneous turbulent shear flow. J. Fluid Mech. 41, 81139.Google Scholar
Cholemari, M. R. & Arakeri, J. H. 2009 Axially homogeneous, zero mean flow buoyancy-driven turbulence in a vertical pipe. J. Fluid Mech. 621, 69102.CrossRefGoogle Scholar
Chouippe, A., Climent, E., Legendre, D. & Gabillet, C. 2014 Numerical simulation of bubble dispersion in turbulent Taylor–Couette flow. Phys. Fluids 26, 043304.CrossRefGoogle Scholar
Chung, D. & Matheou, G. 2012 Direct numerical simulation of stationary homogeneous stratified sheared turbulence. J. Fluid Mech. 693, 434467.Google Scholar
Chung, D. & Pullin, D. I. 2010 Direct numerical simulation and large-eddy simulation of stationary buoyancy-driven turbulence. J. Fluid Mech. 643, 279308.Google Scholar
Dalziel, S. B., Linden, P. F. & Youngs, D. L. 1999 Self-similarity and internal structure of turbulence induced by Rayleigh–Taylor instability. J. Fluid Mech. 399, 148.Google Scholar
Dalziel, S. B., Patterson, M. D., Caulfield, C. P. & Coomaraswamy, I. A. 2008 Mixing efficiency in high-aspect-ratio Rayleigh–Taylor experiments. Phys. Fluids 20, 065106.Google Scholar
Debacq, M., Fanguet, V., Hulin, J. P., Salin, D. & Perrin, B. 2001 Self-similar concentration profiles in buoyant mixing of miscible fluids in a vertical tube. Phys. Fluids 13, 30973100.Google Scholar
Debacq, M., Hulin, J. P., Salin, D., Perrin, B. & Hinch, E. J. 2003 Buoyant mixing of miscible fluids of varying viscosities in vertical tubes. Phys. Fluids 15, 38463855.Google Scholar
Dol, H. S., Hanjalic, K. & Versteegh, T. A. M. 1999 A DNS-based thermal second-moment closure for buoyant convection at vertical walls. J. Fluid Mech. 391, 211247.Google Scholar
Eggels, J. G. M., Unger, F., Weiss, M. H., Westerveel, J., Adrian, R. J., Friedrich, R. & Nieuwstadt, F. T. M. 1994 Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. J. Fluid Mech. 268, 175209.Google Scholar
Freeman, B. E. 1977 Tensor diffusivity of a trace constituent in a stratified boundary layer. J. Atmos. Sci. 34, 124136.Google Scholar
Fureby, C. & Grinstein, F. F. 1999 Monotonically integrated large eddy simulation of free shear flows. AIAA J. 37, 544556.Google Scholar
Fureby, C. & Grinstein, F. F. 2002 Large eddy simulation of high-Reynolds-number free and wall-bounded flows. J. Comput. Phys. 181, 6897.Google Scholar
Garg, R. P., Ferziger, J. H., Monismith, S. G. & Koseff, J. R. 2000 Stably stratified turbulent channel flows. I. Stratification regimes and turbulence suppression mechanism. Phys. Fluids 12, 25692594.Google Scholar
George, W. K. & Gibson, M. M. 1992 The self-preservation of homogeneous shear flow turbulence. Exp. Fluids 13, 229238.Google Scholar
Gibert, M., Pabiou, H., Tisserand, J. C., Gertjerenken, B., Castaing, B. & Chillà, F. 2009 Heat convection in a vertical channel: plumes versus turbulent diffusion. Phys. Fluids 21, 035109.Google Scholar
Grinstein, F. F., Margolin, L. G. & Rider, W. J.(Eds) 2007 Implicit Large Eddy Simulation, Cambridge University Press.Google Scholar
Grötzbach, G. 1983 Spatial resolution requirements for direct numerical simulation of the Rayleigh–Bénard convection. J. Comput. Phys. 49, 241264.Google Scholar
Hallez, Y. & Magnaudet, J. 2008 Effects of channel geometry on buoyancy-driven mixing. Phys. Fluids 20, 053306.Google Scholar
Hallez, Y. & Magnaudet, J. 2009 Turbulence-induced secondary motion in a buoyancy-driven flow in a circular pipe. Phys. Fluids 21, 081704.Google Scholar
Hanjalic, K. 2002 One-point closure models for buoyancy-driven turbulent flows. Annu. Rev. Fluid Mech. 34, 321347.Google Scholar
Harris, V. G., Graham, J. A. H. & Corrsin, S. 1977 Further experiments in nearly homogeneous turbulent shear flow. J. Fluid Mech. 81, 657687.Google Scholar
Holt, S. E., Koseff, J. R. & Ferziger, J. H. 1992 A numerical study of the evolution and structure of homogeneous stably stratified sheared turbulence. J. Fluid Mech. 237, 499539.CrossRefGoogle Scholar
Hunt, J. C. R. & Graham, J. M. R. 1978 Free stream turbulence near plane boundaries. J. Fluid Mech. 84, 209235.CrossRefGoogle Scholar
Kaltenbach, H. J., Gerz, T. & Schumann, U. 1994 Large-eddy simulation of homogeneous turbulence and diffusion in stably stratified shear flow. J. Fluid Mech. 280, 140.Google Scholar
Lawrie, A. G. W. & Dalziel, S. B. 2011a Turbulent diffusion in tall tubes. I. Models for Rayleigh–Taylor instability. Phys. Fluids 23, 085109.CrossRefGoogle Scholar
Lawrie, A. G. W. & Dalziel, S. B. 2011b Turbulent diffusion in tall tubes. II. Confinement by stratification. Phys. Fluids 23, 085110.Google Scholar
Linden, P. F. 1999 The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech. 31, 201238.Google Scholar
Livescu, D. & Ristorcelli, J. R. 2007 Buoyancy-driven variable-density turbulence. J. Fluid Mech. 591, 4371.Google Scholar
Livescu, D. & Ristorcelli, J. R. 2008 Variable-density mixing in buoyancy-driven turbulence. J. Fluid Mech. 605, 145180.Google Scholar
Odier, P., Chen, J. & Ecke, R. E. 2012 Understanding and modeling turbulent fluxes and entrainment in a gravity current. Physica D 241, 260268.Google Scholar
Odier, P., Chen, J., Rivera, M. K. & Ecke, R. E. 2009 Fluid mixing in stratified gravity currents: the Prandtl mixing length. Phys. Rev. Lett. 102, 134504.Google Scholar
Otic, I., Grötzbach, G. & Wörner, M. 2005 Analysis and modelling of the temperature variance equation in turbulent natural convection for low-Prandtl-number fluids. J. Fluid Mech. 525, 237261.Google Scholar
Peltier, W. R. & Caulfield, C. P. 2003 Mixing efficiency in stratified shear flows. Annu. Rev. Fluid Mech. 35, 135167.Google Scholar
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Pumir, A. & Schraiman, B. I. 1995 Persistent small scale anisotropy in homogeneous shear flows. Phys. Rev. Lett. 75, 31143117.Google Scholar
Ramaprabhu, P. & Andrews, M. J. 2004 Experimental investigation of Rayleigh–Taylor mixing at small Atwood numbers. J. Fluid Mech. 502, 233271.Google Scholar
Riediger, X., Tisserand, J. C., Seychelles, F., Castaing, B. & Chillà, F. 2013 Heat transport regimes in an inclined channel. Phys. Fluids 25, 015117.Google Scholar
Riley, J. J. & Corrsin, S. 1974 The relation of turbulent diffusivities to Lagrangian velocity statistics for the simplest shear flow. J. Geophys. Res. 79, 17681771.Google Scholar
Ristorcelli, J. R. & Clark, T. T. 2004 Rayleigh–Taylor turbulence: self-similar analysis and direct numerical simulations. J. Fluid Mech. 507, 213253.Google Scholar
Rogers, M. M., Mansour, N. N. & Reynolds, W. C. 1989 An algebraic model for the turbulent flux of a passive scalar. J. Fluid Mech. 203, 77101.Google Scholar
Rotta, J. 1951 Statistische Theorie nichthomogener Turbulenz, 1. Mitteilung. Z. Phys. 129, 547572.Google Scholar
Salort, J., Riedinger, X., Rusaouen, E., Tisserand, J. C., Seychelles, F., Castaing, B. & Chillà, F. 2013 Turbulent velocity profiles in a tilted heat pipe. Phys. Fluids 25, 105110.Google Scholar
Schmidt, L. E., Calzavarini, E., Lohse, D., Toschi, F. & Verzicco, R. 2012 Axially homogeneous Rayleigh–Bénard convection in a cylindrical cell. J. Fluid Mech. 691, 5268.Google Scholar
Séon, T., Hulin, J. P., Salin, D., Perrin, B. & Hinch, E. J. 2004 Buoyant mixing of miscible fluids in tilted tubes. Phys. Fluids 16, L103L106.Google Scholar
Séon, T., Hulin, J. P., Salin, D., Perrin, B. & Hinch, E. J. 2005 Buoyancy driven miscible front dynamics in tilted tubes. Phys. Fluids 17, 031702.CrossRefGoogle Scholar
Séon, T., Znaien, J., Perrin, B., Hinch, E. J., Salin, D. & Hulin, J. P. 2007 Front dynamics and macroscopic diffusion in buoyant mixing in a tilted tube. Phys. Fluids 19, 123603.Google Scholar
Smyth, W. D. & Moum, J. N. 2000 Length scales of turbulence in stably stratified mixing layers. Phys. Fluids 12, 13271342.Google Scholar
Tavoularis, S. & Corrsin, S. 1981a Experiments in nearly homogenous turbulent shear flow with a uniform mean temperature gradient. Part 1. J. Fluid Mech. 104, 311347.CrossRefGoogle Scholar
Tavoularis, S. & Corrsin, S. 1981b Experiments in nearly homogenous turbulent shear flow with a uniform mean temperature gradient. Part 2. The fine structure. J. Fluid Mech. 104, 349367.Google Scholar
Tavoularis, S. & Corrsin, S. 1985 Effects of shear on the turbulent diffusivity transfer. Intl J. Heat Mass Transfer 28, 265276.Google Scholar
Tavoularis, S. & Karnik, U. 1989 Further experiments on the evolution of turbulent stresses and scales in uniformly sheared turbulence. J. Fluid Mech. 204, 457478.Google Scholar
Tisserand, J. C., Creyssels, M., Gibert, M., Castaing, B. & Chillà, F. 2010 Convection in a vertical channel. New J. Phys. 12, 075024.Google Scholar
Verma, S. & Blanquart, G. 2013 On filtering in the viscous-convective subrange for turbulent mixing of high Schmidt number passive scalars. Phys. Fluids 25, 055104.Google Scholar
Versteegh, T. A. M. & Nieuwstadt, F. T. M. 1998 Turbulent budgets of natural convection in an infinite, differentially heated, vertical channel. Intl J. Heat Fluid Flow 19, 135149.Google Scholar
Woods, A. W. 2010 Turbulent plumes in Nature. Annu. Rev. Fluid Mech. 42, 391412.Google Scholar
Zalesak, S. T. 1979 Fully multidimensional flux-corrected transport algorithms for fluids. J. Comput. Phys. 31, 335362.Google Scholar
Znaien, J., Hallez, Y., Moisy, F., Magnaudet, J., Hulin, J. P., Salin, D. & Hinch, E. J. 2009 Experimental and numerical investigations of flow structure and momentum transport in a turbulent buoyancy-driven flow inside a tilted tube. Phys. Fluids 21, 115102.Google Scholar
Znaien, J., Moisy, F. & Hulin, J. P. 2011 Flow structure and momentum transport for buoyancy driven mixing flows in long tubes at different tilt angles. Phys. Fluids 23, 035105.CrossRefGoogle Scholar

Hallez and Magnaudet supplementary movie

Flow development along the pipe. The coloured surfaces represent iso-contours of C. They are distributed evenly between C=0.1 (red) and C=0.9 (blue), with green corresponding to C=0.5.

Download Hallez and Magnaudet supplementary movie(Video)
Video 414.9 KB

Hallez and Magnaudet supplementary movie

Detail of the flow development in the upper part of the pipe visualized with the C=0.1 iso-surface. The latter is coloured by the "swirling strength" intensity which helps identify three-dimensional vortical structures (see Hallez & Magnaudet (2008) and references therein).

Download Hallez and Magnaudet supplementary movie(Video)
Video 593.5 KB