Hostname: page-component-5c6d5d7d68-pkt8n Total loading time: 0 Render date: 2024-08-16T07:07:40.907Z Has data issue: false hasContentIssue false

Intracellular proteinase of Lactococcus lactis subsp. lactis NCDO 763

Published online by Cambridge University Press:  01 June 2009

Graciela Muset
Affiliation:
Station de Recherches Laitières, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
Véronique Monnet
Affiliation:
Station de Recherches Laitières, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
Jean-Claude Gripon
Affiliation:
Station de Recherches Laitières, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France

Summary

An intracellular proteinase was purified from Lactococcus lactis subsp. lactis NCDO 763 after spheroplast formation from cell wall proteinase-deficient variants. The proteinase was active at pH 7·5 and 45 °C and affected by metalloenzyme inhibitors. Its specificity, determined on B-chain of insulin, was thermolysin-like. The B-chain of insulin was hydrolysed rapidly while hydrolysis of β-casein was slower. This enzyme has a Mr of ∽ 93000.

Type
Original articles
Copyright
Copyright © Proprietors of Journal of Dairy Research 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bradford, M. M. 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry 72 248254CrossRefGoogle ScholarPubMed
Cogan, T. M. 1984 Mesophilic lactic cultures, international Dairy Federation Bulletin Document No. 179 7788.Google Scholar
Desmazeaud, M. J. 1974 [General properties and specificity of an intracellular neutral endopeptidase from Streptococcus thermophilus.] Biochimie 56 11731181CrossRefGoogle ScholarPubMed
Desmazeaud, M. J. & Zevaco, C. 1976 General properties and substrate specificity of an intracellular neutral protease from Streptococcus diacetilactis. Annales de Biologie Animale, Biochimie, Biophysique 16 851868CrossRefGoogle Scholar
Donnelly, W. J., Barry, J. G. & Richardson, T. 1980 14C-methylated β-casein as a substrate for plasmin, and its application to the study of milk protein transformations. Biochimica et Biophysica Acta 626 117126CrossRefGoogle Scholar
El Soda, M., Desmazeaud, M. J., Le Bars, D. & Zevaco, C. 1986 Cell-wall-associated proteinases in Lactobacillus casei and Lactobacillus plantarum. Journal of Food Protection 49 361365CrossRefGoogle ScholarPubMed
Exterkate, F. A. 1975 An introductory study of the proteolytic system of Streptococcus cremoris strain HP. Netherlands Milk and Dairy Journal 29 303318Google Scholar
Exterkate, F. A. & De Veer, G. J. C. M. 1985 Partial isolation and degradation of caseins by cell wall proteinase(s) of Streptococcus cremoris HP. Applied and Environmental Microbiology 49 328332CrossRefGoogle ScholarPubMed
Gasson, M. J. 1980 Production, regeneration and fusion of protoplasts in lactic streptococci. FEMS Microbiology Letters 9 99102CrossRefGoogle Scholar
Geis, A., Bockelmann, W. & Teuber, M. 1985 Simultaneous extraction and purification of a cell wall-associated peptidase and β-casein specific protease from Streptococcus cremoris ACI. Applied Microbiology and Biotechnology 23 7984CrossRefGoogle Scholar
Ichishima, E., Kawai, Y., Takeuchi, M. & Ahiko, K. 1986 Initial cleavage site of the oxidized insulin B-chain by a ribosomal proteinase from Streptococcus lactis, a food microorganism. Current Microbiology 13 4749CrossRefGoogle Scholar
Komiyama, T., Aoyagi, T., Takeuchi, T. & Umezawa, H. 1975 Inhibitory effects of phosphoramidon on neutral metalloendopeptidases and its application on affinity chroinatography. Biochemical and Biophysical Research Communications 65 352357CrossRefGoogle Scholar
Laemmli, U. K. 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 680685CrossRefGoogle ScholarPubMed
Law, B. A. & Kolstad, J. 1983 Proteolytic systems in lactic acid bacteria. Antonie van Leeuwenhoek Journal of Microbiology 49 225245CrossRefGoogle ScholarPubMed
Mills, O. E. & Thomas, T. D. 1978 Release of cell wall-associated proteinase(s) from lactic streptococci. New Zealand Journal of Dairy Science and Technology 13 209215Google Scholar
Monnet, V., Le Bars, D. & Gripon, J. C. 1986 Specificity of a cell wall proteinase from Streptococcus lactis NCDO 763 towards bovine β-casein. FEMS Microbiology Letters 36 127131Google Scholar
Monnet, V., Le Bars, D. & Gripon, J. C. 1987 b Purification and characterization of a cell wall proteinase from Streptococcus lactis NCDO 763. Journal of Dairy Research 54 247255CrossRefGoogle ScholarPubMed
Monnet, V., Le Bars, D., Neviani, E. & Gripon, J. C. 1987 a Partial characterization and comparison of cell wall proteinases from 5 strains of Streptococcus lactis. Lait 67 5161CrossRefGoogle Scholar
Ohmiya, K. & Sato, Y. 1975 Purification and properties of intracellular proteinase from Streptococcus cremoris. Applied Microbiology 30 738745CrossRefGoogle ScholarPubMed
Pearce, L. E., Skipper, N. A. & Jarvis, B. D. W. 1974 Proteinase activity in slow lactic acid-producing variants of Streptococcus lactis. Applied Microbiology 27 933937CrossRefGoogle ScholarPubMed
Rabier, O. & Desmazeaud, M. J. 1973 [Inventory of the different intracellular peptidase activities of Streptococcus thermophilus. Purification and properties of a dipeptide hydrolase and an aminopeptidase.] Biochimie 55 389404CrossRefGoogle Scholar
Richardson, G. H., Ernstrom, C. A., Kim, J. M. & Daly, C. 1983 Proteinase negative variants of Streptococcus cremoris for cheese starters. Journal of Dairy Science 66 22782286CrossRefGoogle Scholar
Schmidt, R. H., Morris, H. A. & Mckay, L. L. 1977 Cellular location and characteristics of peptidase enzymes in lactic streptococci. Journal of Dairy Science 60 710717CrossRefGoogle Scholar
Stoodard, G. W. & Richardson, G. H. 1986 Effect of proteolytic activity of Streptococcus cremoris on cottage cheese yields. Journal of Dairy Science 69 914CrossRefGoogle Scholar
Tarr, G. E. 1982 In Methods in Protein Sequence Analysis, pp. 223232 (Ed. Elzinga, M.). Clifton, NY: Humana PressCrossRefGoogle Scholar
Terzaghi, B. E. & Sandine, W. E. 1975 Improved medium for lactic streptococci and their baeteriophages. Applied Microbiology 29 807813CrossRefGoogle Scholar
Thomas, T. D. 1975 Tagatose-1, 6-diphosphate activation of lactate dehydrogenase from Streptococcus cremoris. Biochemical and Biophysical Research Communications 63 10351042CrossRefGoogle ScholarPubMed
Thomas, T. D. & Mills, O. E. 1981 Proteolytic enzymes of starter bacteria. Netherlands Milk and Dairy Journal 35 255273Google Scholar
Thomas, T. D. & Pritchard, G. G. 1987 Proteolytic enzymes of dairy starter cultures. FEMS Microbiology Reviews 46 245268CrossRefGoogle Scholar
Thomas, T. D. & Turner, K. W. 1977 Preparation of skim milk to allow harvesting of starter cells from milk cultures. New Zealand Journal of Dairy Science and Technology 12 1521Google Scholar
Van Der Zant, W. C. & Nelson, F. E. 1953 Characteristics of an endocellular proteolytic enzyme system of Streptococcus lactis. Journal of Dairy Science 36 12121222CrossRefGoogle Scholar
Visser, S., Exterkate, F. A., Slangen, C. J. & De Veer, G. J. C. M. 1986 Comparative study of action of cell wall proteinases from various strains of Streptococcus cremoris on bovine αs1, β, and κ-casein. Applied and Environmental Microbiology 52 11621166Google Scholar
Yan, T. R., Azuma, N., Kaminooawa, S. & Yamauchi, K. 1987 Purification and characterization of a novel metalloendopeptidase from Streptococcus cremoris H61. A metalloendopeptidase that recognizes the size of its substrate. European Journal of Biochemistry 163 259265Google Scholar
Zevaco, C. & Desmazeaud, M. J. 1980 Hydrolysis of β-casein and peptides by intracellular neutral protease of Streptococcus diacetylactis. Journal of Dairy Science 63 1524CrossRefGoogle ScholarPubMed