Hostname: page-component-848d4c4894-p2v8j Total loading time: 0 Render date: 2024-04-30T20:27:59.984Z Has data issue: false hasContentIssue false

Weak convergence of the extremes of branching Lévy processes with regularly varying tails

Published online by Cambridge University Press:  06 December 2023

Yan-xia Ren*
Affiliation:
Peking University
Renming Song*
Affiliation:
University of Illinois Urbana-Champaign
Rui Zhang*
Affiliation:
Capital Normal University
*
*Postal address: LMAM School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, 100871, P. R. China. Email: yxren@math.pku.edu.cn
**Postal address: Department of Mathematics, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA. Email: rsong@illinois.edu
***Postal address: School of Mathematical Sciences & Academy for Multidisciplinary Studies, Capital Normal University, Beijing, 100048, P.R. China. (Corresponding Author). Email: zhangrui27@cnu.edu.cn

Abstract

We study the weak convergence of the extremes of supercritical branching Lévy processes $\{\mathbb{X}_t, t \ge0\}$ whose spatial motions are Lévy processes with regularly varying tails. The result is drastically different from the case of branching Brownian motions. We prove that, when properly renormalized, $\mathbb{X}_t$ converges weakly. As a consequence, we obtain a limit theorem for the order statistics of $\mathbb{X}_t$.

Type
Original Article
Copyright
© The Author(s), 2023. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aïdékon, E. (2013). Convergence in law of the minimum of a branching random walk. Ann. Prob. 41, 13621426.CrossRefGoogle Scholar
Aïdékon, E., Berestycki, J., Brunet, É. and Shi, Z. (2013). Branching Brownian motion seen from its tip. Prob. Theory Relat. Fields 157, 405451.CrossRefGoogle Scholar
Arguin, L.-P., Bovier, A. and Kistler, N. (2012). Poissonian statistics in the extremal process of branching Brownian motion. Ann. Appl. Prob. 22, 16931711.CrossRefGoogle Scholar
Arguin, L.-P., Bovier, A. and Kistler, N. (2013). The extremal process of branching Brownian motion. Prob. Theory Relat. Fields 157, 535574.CrossRefGoogle Scholar
Aronson, D. G. and Weinberger, H. F. (1978). Multidimensional nonlinear diffusion arising in population genetics. Adv. Math. 30, 3376.CrossRefGoogle Scholar
Athreya, K. B. and Ney, P. E. (1972). Branching Processes. Springer, Berlin.CrossRefGoogle Scholar
Bertoin, J. (1996). Lévy Processes. Cambridge University Press.Google Scholar
Bhattacharya, A., Hazra, A. R. S. and Roy, P. (2017). Point process convergence for branching random walks with regularly varying steps. Ann. Inst. H. Poincaré Prob. Statist. 53, 802818.CrossRefGoogle Scholar
Bhattacharya, A., Hazra, A. R. S. and Roy, P. (2018). Branching random walks, stable point processes and regular variation. Stoch. Process. Appl. 128, 182210.CrossRefGoogle Scholar
Bhattacharya, A., Maulik, K., Palmowski, Z. and Roy, P. (2019). Extremes of multi-type branching random walks: Heaviest tail wins. Adv. Appl. Prob. 51, 514540.CrossRefGoogle Scholar
Bingham, N H., Goldie, C. M. and Teugels, J. L. (1978). Regular Variation. Cambridge University Press.Google Scholar
Bocharov, S. (2020). Limiting distribution of particles near the frontier in the catalytic branching Brownian motion. Acta Appl. Math. 169, 433453.CrossRefGoogle Scholar
Bocharov, S. and Harris, S. C. (2014). Branching Brownian motion with catalytic branching at the origin. Acta Appl. Math. 134, 201228.CrossRefGoogle Scholar
Bocharov, S. and Harris, S. C. (2016). Limiting distribution of the rightmost particle in catalytic branching Brownian motion. Electron. Commun. Prob. 21, 70.CrossRefGoogle Scholar
Bramson, M. (1978). Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31, 531581.CrossRefGoogle Scholar
Bramson, M. (1983). Convergence of solutions of the Kolmogorov equation to travelling waves. Mem. Amer. Math. Soc. 44, 285.Google Scholar
Cabré, X. and Roquejoffre, J.-M. (2013). The influence of fractional diffusion in Fisher–KPP equations. Commun. Math. Phys. 320, 679722.CrossRefGoogle Scholar
Carmona, P. and Hu, Y. (2014). The spread of a catalytic branching random walk. Ann. Inst. H. Poincaré Prob. Statist. 50, 327351.CrossRefGoogle Scholar
Chauvin, B. and Rouault, A. (1988). KPP equation and supercritical branching Brownian motion in the subcritical speed area. Application to spatial trees. Prob. Theory Relat. Fields 80, 299–314.CrossRefGoogle Scholar
Chauvin, B. and Rouault, A. (1990). Supercritical branching Brownian motion and K-P-P equation in the critical speed-area. Math. Nachr. 149, 4159.CrossRefGoogle Scholar
Chen, Z.-Q. and Kumagai, T. (2008). Heat kernel estimates for jump processes of mixed type on metric measure spaces. Prob. Theory Relat. Fields 140, 277317.CrossRefGoogle Scholar
Chen, Z.-Q. and Kumagai, T. (2010). A prior Hölder estimate, parabolic Harnack principle and heat kernel estimates for diffusions with jumps. Rev. Mat. Iberoam. 26, 551589.CrossRefGoogle Scholar
Durrett, R. (1983). Maxima of branching random walks. Z. Wahrscheinlichkeitsth. 62, 165170.CrossRefGoogle Scholar
Durrett, R. (2010). Probability: Theory and Examples, 4th edn (Cambridge Ser. Statist. Prob. Math. 31). Cambridge University Press.Google Scholar
Gantert, N. (2000). The maximum of a branching random walk with semiexponential increments. Ann. Prob. 28, 12191229.CrossRefGoogle Scholar
Hardy, R. and Harris, S. C. (2009). A spine approach to branching diffusions with applications to L-p-convergence of martingales. Séminaire de Probabilités XLII, 281–330.CrossRefGoogle Scholar
Hu, Y. and Shi, Z. (2009). Minimal position and critical martingale convergence in branching random walks, and directed polymers on disordered trees. Ann. Prob. 37, 742789.CrossRefGoogle Scholar
Kallenberg, O. (2017). Random Measures, Theory and Applications (Prob. Theory Stoch. Modelling 77). Springer, Cham.Google Scholar
Kolmogorov, A. Petrovskii, I. and Piskounov, N. (1937). Étude de l’équation de la diffusion avec croissance de la quantité de la mati $\grave{e}$ re at son application $\grave{a}$ un problem biologique. Moscow Univ. Math. Bull 1, 125.Google Scholar
Lalley, S. and Sellke, T. (1987). A conditional limit theorem for the frontier of branching Brownian motion. Ann. Prob. 15, 10521061.CrossRefGoogle Scholar
Lalley, S. and Sellke, T. (1988). Travelling waves in inhomogeneous branching Brownian motions I. Ann. Prob. 16, 10511062.CrossRefGoogle Scholar
Lalley, S. and Sellke, T. (1989). Travelling waves in inhomogeneous branching Brownian motions II. Ann. Prob., 17, 116127.CrossRefGoogle Scholar
Madaule, T. (2017). Convergence in law for the branching random walk seen from its tip. J. Theor. Prob., 30, 2763.CrossRefGoogle Scholar
Nishimori, Y. and Shiozawa, Y. (2022). Limiting distributions for the maximal displacement of branching Brownian motions. J. Math. Soc. Japan 74, 177216.CrossRefGoogle Scholar
Roberts, M. I. (2013). A simple path to asymptotics for the frontier of a branching Brownian motion. Ann. Prob. 41, 35183541.CrossRefGoogle Scholar
Sato, K.-I. (2013). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.Google Scholar
Shiozawa, Y. (2018). Spread rate of branching Brownian motions. Acta Appl. Math. 155, 113150.CrossRefGoogle Scholar
Shiozawa, Y. (2022). Maximal displacement of branching symmetric stable processes. In Dirichlet Forms and Related Topics, eds Chen, Z.-Q., Takeda, M. and Uemura, T. (Springer Proc. Math. Statist. 394), Springer, Singapore, pp. 461–491.CrossRefGoogle Scholar
Song, R. and Vondraček, Z. (2007). Parabolic Harnack inequality for the mixture of Brownian motion and stable processes. Tohoku Math. J. 59, 119.CrossRefGoogle Scholar