Skip to main content Accessibility help
×
Home

Conditional Ordering of k-out-of-n Systems with Independent But Nonidentical Components

Published online by Cambridge University Press:  14 July 2016

Peng Zhao
Affiliation:
Lanzhou University
Xiaohu Li
Affiliation:
Lanzhou University
N. Balakrishnan
Affiliation:
McMaster University
Corresponding
Rights & Permissions[Opens in a new window]

Abstract

By considering k-out-of-n systems with independent and nonidentically distributed components, we discuss stochastic monotone properties of the residual life and the inactivity time. We then present some stochastic comparisons of two systems based on the residual life and inactivity time.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2008 

References

Asadi, M. (2006). On the mean past lifetime of the components of a parallel system. J. Statist. Planning Infer. 136, 11971206.CrossRefGoogle Scholar
Asadi, M. and Bairamov, I. (2005). A note on the mean residual life function of a parallel system. Commun. Statist. Theory Meth. 34, 475484.CrossRefGoogle Scholar
Bairamov, I., Ahsanullah, M. and Akhundov, I. (2002). A residual life funtion of a system having parallel or series structures. J. Statist. Theory Appl. 1, 119131.Google Scholar
Balakarishnan, N. (2007). Permanents, order statistics, outliers, and robustness. Revista Matemàtica Complutense 20, 7107.Google Scholar
Bapat, R. B. and Beg, M. I. (1989). Order statistics for nonidentically distributed variables and permanents. Sankhyā A 51, 7993.Google Scholar
Bapat, R. B. and Kochar, S. C. (1994). On likelihood-ratio ordering of order statistics. Linear Algebra Appl. 199, 281291.CrossRefGoogle Scholar
Belzunce, F., Franco, M. and Ruiz, J. M. (1999). On ageing properties based on the residual life of k-out-of-n systems. Prob. Eng. Inf. Sci. 13, 193199.CrossRefGoogle Scholar
Boland, P. J., Hu, T., Shaked, M. and Shanthikumar, J. G. (2002). Stochastic ordering of order statistics. II. In Modeling Uncertainty: An Examination of Stochastic Theory, Methods and Applications, eds Dror, M., L'Ecuyer, P. and Szidarovszky, F., Kluwer, Boston, MA, pp. 607623.Google Scholar
David, H. A. and Nagaraja, H. N. (2003). Order Statistics, 3rd edn. John Wiley, Hoboken, NJ.CrossRefGoogle Scholar
Gasemyr, J. and Natvig, B. (1998). The posterior distribution of the parameters of component lifetimes based on autopsy data in a shock model. Scand. J. Statist. 25, 271292.CrossRefGoogle Scholar
Gasemyr, J. and Natvig, B. (2001). Bayesian inference based on partial monitoring of components with applications to preventive system maintenance. Naval Res. Logistics 48, 551577.CrossRefGoogle Scholar
Hu, T. and Zhu, Z. (2003). Stochastic comparisons of order statistics from two samples. Southeast Asian Bull. Math. 27, 8998.Google Scholar
Hu, T., Jin, W. and Khaledi, B.-E. (2007). Ordering conditional distributions of generalized order statistics. Prob. Eng. Inf. Sci. 21, 401417.CrossRefGoogle Scholar
Hu, T., Wang, F. and Zhu, Z. (2006). Stochastic comparisons and dependence of spacings from two samples of exponential random variables. Commun. Statist. Theory Meth. 35, 979988.CrossRefGoogle Scholar
Khaledi, B-E. and Shaked, M. (2006). Ordering conditional residual lifetimes of coherent systems. J. Statist. Planning Infer. 137, 11731184.CrossRefGoogle Scholar
Kuo, W. and Zuo, M. J. (2002). Optimal Reliability Modeling: Principles and Applications. John Wiley, Hoboken, NJ.Google Scholar
Langberg, N. A., Leon, R. V. and Proschan, F. (1980). Characterization of nonparametric classes of life distributions. Ann. Prob. 8, 11631170.CrossRefGoogle Scholar
Li, X. and Chen, J. (2004). Aging properties of the residual life length of k-out-of-n systems with independent but non-identical components. Appl. Stoch. Models Business Industry 20, 143153.CrossRefGoogle Scholar
Li, X. and Zhao, P. (2006). Some ageing properties of the residual life of k-out-of-n systems. IEEE Trans. Reliab. 55, 535541.CrossRefGoogle Scholar
Li, X. and Zhao, P. (2008). Stochastic comparison on general inactivity time and general residual life of k-out-of-n systems. Commun. Statist. Simul. Comput. 37, 10051019.CrossRefGoogle Scholar
Li, X. and Zuo, M. J. (2002). On the behaviour of some new ageing properties based upon the residual life of k-out-of-n systems. J. Appl. Prob. 39, 426433.Google Scholar
Lillo, R., Nanda, A. K. and Shaked, M. (2001). Preservation of some likelihood ratio orders by order statistics. Statist. Prob. Lett. 51, 111119.CrossRefGoogle Scholar
Meilijson, I. (1981). Estimation of the lifetime distribution of the parts from autopsy statistics of the machine. J. Appl. Prob. 18, 829838.CrossRefGoogle Scholar
Müller, A. and Stoyan, D. (2002). Comparison Methods for Stochastic Models and Risks. John Wiley, New York.Google Scholar
Nanda, A. K. and Shaked, M. (2001). The hazard rate and the reversed hazard rate orders, with applications to order statistics. Ann. Inst. Statist. Math. 53, 853864.CrossRefGoogle Scholar
Sadegh, M. K. (2008). Mean past and mean residual life functions of a parallel system with nonidentical components. Commun. Statist. Theory Meth. 37, 11341145.CrossRefGoogle Scholar
Shaked, M. and Shanthikumar, J. G. (2007). Stochastic Orders. Springer, New York.CrossRefGoogle Scholar
Xie, H. and Hu, T. (2008). Conditional ordering of generalized order statistics revisited. Prob. Eng. Inf. Sci. 22, 333346.CrossRefGoogle Scholar
Xu, M. (2008). Ordering residual lifetimes of k-out-of-n systems with nonidentical components. Tech. Rep., Department of Mathematics and Statistics, Portland State University.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 134 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 22nd January 2021. This data will be updated every 24 hours.

Access
Hostname: page-component-76cb886bbf-2crfx Total loading time: 0.298 Render date: 2021-01-22T19:02:58.514Z Query parameters: { "hasAccess": "1", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Conditional Ordering of k-out-of-n Systems with Independent But Nonidentical Components
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Conditional Ordering of k-out-of-n Systems with Independent But Nonidentical Components
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Conditional Ordering of k-out-of-n Systems with Independent But Nonidentical Components
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *