Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-15T01:17:26.717Z Has data issue: false hasContentIssue false

Bivariate tempered space-fractional Poisson process and shock models

Published online by Cambridge University Press:  23 May 2024

Ritik Soni*
Affiliation:
Central University of Punjab, Bathinda
Ashok Kumar Pathak*
Affiliation:
Central University of Punjab, Bathinda
Antonio Di Crescenzo*
Affiliation:
Università degli Studi di Salerno, Fisciano, Italy
Alessandra Meoli*
Affiliation:
Università degli Studi di Salerno, Fisciano, Italy
*
*Postal address: Department of Mathematics and Statistics, Central University of Punjab, Bathinda, Punjab 151401, India.
*Postal address: Department of Mathematics and Statistics, Central University of Punjab, Bathinda, Punjab 151401, India.
****Postal address: Dipartimento di Matematica, Università degli Studi di Salerno, I-84084 Fisciano (SA), Italy.
****Postal address: Dipartimento di Matematica, Università degli Studi di Salerno, I-84084 Fisciano (SA), Italy.

Abstract

We introduce a bivariate tempered space-fractional Poisson process (BTSFPP) by time-changing the bivariate Poisson process with an independent tempered $\alpha$-stable subordinator. We study its distributional properties and its connection to differential equations. The Lévy measure for the BTSFPP is also derived. A bivariate competing risks and shock model based on the BTSFPP for predicting the failure times of items that undergo two random shocks is also explored. The system is supposed to break when the sum of two types of shock reaches a certain random threshold. Various results related to reliability, such as reliability function, hazard rates, failure density, and the probability that failure occurs due to a certain type of shock, are studied. We show that for a general Lévy subordinator, the failure time of the system is exponentially distributed with mean depending on the Laplace exponent of the Lévy subordinator when the threshold has a geometric distribution. Some special cases and several typical examples are also demonstrated.

Type
Original Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Applebaum, D. (2009). Lévy Processes and Stochastic Calculus (Camb. Studies Adv. Math. 116). Cambridge University Press.Google Scholar
Bedford, T. and Cooke, R. (2001). Probabilistic Risk Analysis: Foundations and Methods. Cambridge University Press.CrossRefGoogle Scholar
Beghin, L. and Macci, C. (2016). Multivariate fractional Poisson processes and compound sums. Adv. Appl. Prob. 48, 691711.CrossRefGoogle Scholar
Beghin, L. and Macci, C. (2017). Asymptotic results for a multivariate version of the alternative fractional Poisson process. Statist. Prob. Lett. 129, 260268.CrossRefGoogle Scholar
Beghin, L. and Vellaisamy, P. (2018). Space-fractional versions of the negative binomial and Polya-type processes. Methodology Comput. Appl. Prob. 20, 463485.CrossRefGoogle Scholar
Cha, J. H. and Finkelstein, M. (2016). New shock models based on the generalized Polya process. Europ. J. Operat. Res. 251, 135141.CrossRefGoogle Scholar
Cha, J. H. and Giorgio, M. (2018). Modelling of marginally regular bivariate counting process and its application to shock model. Methodology Comput. Appl. Prob. 20, 11371154.CrossRefGoogle Scholar
Crowder, M. (2001). Classical Competing Risks. Chapman & Hall, Boca Raton, FL.CrossRefGoogle Scholar
Di Crescenzo, A. and Longobardi, M. (2008). Competing risks within shock models. Sci. Math. Jpn. 67, 125135.Google Scholar
Di Crescenzo, A. and Meoli, A. (2023). Competing risks and shock models governed by a generalized bivariate Poisson process. J. Appl. Prob. 60, 709722.CrossRefGoogle Scholar
Gajda, J., Kumar, A. and Wyłómańska, A. (2019). Stable Lévy process delayed by tempered stable subordinator. Statist. Prob. Lett. 145, 284292.CrossRefGoogle Scholar
Gradshteyn, I. S. and Ryzhik, I. M. (2014). Tables of Integrals, Series, and Products. Academic Press, New York.Google Scholar
Gupta, N., Kumar, A. and Leonenko, N. (2020). Skellam type processes of order k and beyond. Entropy, 22, 1193.CrossRefGoogle Scholar
Gupta, N., Kumar, A. and Leonenko, N. (2020). Tempered fractional Poisson processes and fractional equations with Z-transform. Stoch. Anal. Appl. 38, 939957.CrossRefGoogle Scholar
Gupta, N., Kumar, A. and Leonenko, N. (2021). Stochastic models with mixtures of tempered stable subordinators. Math. Commun. 26, 7799.Google Scholar
Johnson, W. P. (2002). The curious history of Faà di Bruno’s formula. Amer. Math. Monthly 109, 217234.Google Scholar
Kilbas, A. A., Saigo, M. and Trujillo, J. J. (2002). On the generalized Wright function. Fractional Calculus Appl. Anal. 5, 437460.Google Scholar
Küchler, U. and Tappe, S. (2013). Tempered stable distributions and processes. Stoch. Process. Appl. 123, 42564293.CrossRefGoogle Scholar
Kumar, A., Maheshwari, A. and Wyłómańska, A. (2019). Linnik Lévy process and some extensions. Physica A 529, 121539.CrossRefGoogle Scholar
Kumar, A., Nane, E. and Vellaisamy, P. (2011). Time-changed Poisson processes. Statist. Prob. Lett. 81, 18991910.CrossRefGoogle Scholar
Kumar, A. and Vellaisamy, P. (2015). Inverse tempered stable subordinators. Statist. Prob. Lett. 103, 134141.CrossRefGoogle Scholar
Lehmann, A. (2006). Degradation-threshold-shock models. In Probability, Statistics and Modelling in Public Health, eds. M. Nikulin, D. Commenges and C. Huber. Springer, Boston, MA, pp. 286–298.CrossRefGoogle Scholar
Leonenko, N. and Merzbach, E. (2015). Fractional Poisson fields. Methodology Comput. Appl. Prob. 17, 155168.CrossRefGoogle Scholar
Maheshwari, A. and Vellaisamy, P. (2019). Fractional Poisson process time-changed by Lévy subordinator and its inverse. J. Theoret. Prob. 32, 12781305.CrossRefGoogle Scholar
Meerschaert, M., Nane, E. and Vellaisamy, P. (2011). The fractional Poisson process and the inverse stable subordinator. Electron. J. Prob. 16, 16001620.CrossRefGoogle Scholar
Orsingher, E. and Polito, F. (2012). The space-fractional Poisson process. Statist. Prob. Lett. 82, 852858.CrossRefGoogle Scholar
Orsingher, E. and Toaldo, B. (2015). Counting processes with Bernštein intertimes and random jumps. J. Appl. Prob. 52, 10281044.CrossRefGoogle Scholar
Rama, C. and Tankov, P. (2004). Financial Modelling with Jump Processes. Chapman & Hall/CRC, Boca Raton, FL.Google Scholar
Sato, K.-I. (1999). Lévy Processes and Infinitely Divisible Distributions. Cambridge University Press.Google Scholar
Schilling, R. L., Song, R. and Vondraček, Z. (2009). Bernstein Functions: Theory and Applications. de Gruyter, Berlin.CrossRefGoogle Scholar
Soni, R. and Pathak, A. K. (2024). Generalized fractional negative binomial process. Statist. Prob. Lett. 207, 110021.CrossRefGoogle Scholar
Stanislavsky, A. and Weron, K. (2008). Two-time scale subordination in physical processes with long-term memory. Ann. Phys. 323, 643653.CrossRefGoogle Scholar
Tsay, R. S. (2005). Analysis of Financial Time Series. John Wiley, Chichester.CrossRefGoogle Scholar
Wang, C. (2022). An explicit compound Poisson process-based shock deterioration model for reliability assessment of aging structures. J. Traffic Transport. Eng. 9, 461472.Google Scholar