Skip to main content Accessibility help
×
Home

Wideband radar cross-section reduction of a microstrip antenna using slots

  • Jiakai Zhang (a1), Haixiong Li (a1), Qi Zheng (a1), Jun Ding (a1) and Chenjiang Guo (a1)...

Abstract

In this study, a new microstrip patch antenna with wideband radar cross-section (RCS) reduction is presented. The RCS of the proposed antenna was reduced by subtracting the current-direction slots of the patch, with the radiation performance sustained not only for the current-direction subtraction, but also for the no modification in the ground plane. Modified and reference antenna were fabricated and measured. The simulation and measurement results showed that the modified antenna reduced the in-band and out-band RCS simultaneously with no detriment to the radiation performance. In the frequency band from 3.9 to 8.1 GHz, the RCS of the modified antenna was reduced in the whole band compared with the RCS of the reference antenna. The maximum RCS reduction was 7 dB at a frequency of 6.7 GHz.

Copyright

Corresponding author

Author for correspondence: Zhang JiaKai, E-mail: zjkyikun@mail.nwpu.edu.cn

References

Hide All
1.Zheng, YJ, Gao, J, Cao, XY et al. (2015) Wideband RCS reduction of a microstrip antenna using artificial magnetic conductor structures. IEEE Antennas and Wireless Propagation Letters 14, 15821585.
2.Panda, PK and Ghosh, D (2013) Mushroom-like EBG structures for reducing RCS of patch antenna arrays, International Conference on Microwave and Photonics, Dhanbad, India.
3.Kandasamy, K, Majumder, B, Mukherjee, J et al. (2015) Low-RCS and polarization-reconfigurable antenna using cross-slot-based metasurface. IEEE Antennas and Wireless Propagation Letters 14, 16381641.
4.Genovesi, S, Costa, F and Monorchio, A (2014) Wideband radar cross section reduction of slot antennas arrays. IEEE Transactions on Antennas and Propagation 62, 163173.
5.Li, SJ, Gao, J, Cao, XY et al. (2015) Loading metamaterial perfect absorber method for in-band radar cross section reduction based on the surface current distribution of array antennas. IET Microwaves, Antennas & Propagation 9, 399406.
6.Turpin, JP, Sieber, PE and Werner, DH (2013) Absorbing ground planes for reducing planar antenna radar cross-section based on frequency selective surfaces. IEEE Antennas and Wireless Propagation Letters 12, 14561459.
7.Zhang, S (2016) Novel dual-band compact HIS and its application of reducing array in-band RCS. Microwave and Optical Technology Letters 58, 700704.
8.Zheng, YJ, Gao, J, Cao, XY et al. (2016) Wideband RCS reduction of patch array antenna with miniaturized FSS. Microwave and Optical Technology Letters 58, 969973.
9.Shang, YP, Xiao, SQ and Wang, BZ (2014) Radar cross-section reduction design for a microstrip antenna. Microwave and Optical Technology Letters 56, 12001204.
10.Chen, Q and Fu, YQ (2014) A planar stealthy antenna radome using absorptive frequency selective surface. Microwave and Optical Technology Letters 56, 17881792.
11.Zheng, YJ, Gao, J, Cao, XY et al. (2015) Wideband RCS reduction and gain enhancement microstrip antenna using chessboard configuration superstrate. Microwave and Optical Technology Letters 57, 17381741.
12.Dikmen, CM, Cimen, S and Cakir, G (2013) An octagonal shaped ultra wide band antenna with reduced RCS, 2nd International Japan-Egypt Conference on Electronics, Communications and Computers, Cairo, Egypt.
13.Dikmen, CM, Cimen, S and Cakir, G (2013) Design of double-sided axe-shaped ultra-wideband antenna with reduced radar cross-section. IET Microwaves, Antennas & Propagation 8, 571579.
14.Jamro, DA, Hong, JS, Bah, MH et al. (2014) Triangular antenna with novel techniques for RCS reduction applications, International Conference on Wireless Communications, Networking and Applications, Shenzen, China.
15.Pan, WB, Huang, C, Chen, P et al. (2014) A low-RCS and high-gain partially reflecting surface antenna. IEEE Transactions on Antennas and Propagation 62, 945949.
16.Shang, Y, Xiao, S, Tang, MC et al. (2012) Radar cross section reduction for a microstrip patch antenna using PIN diodes. IET Microwaves, Antennas & Propagation 6, 670679.
17.Xu, WW, Wang, JH, Chen, M et al. (2014) Reduction of the in-band RCS of microstrip patch antenna by using offset feeding technique. International Journal of Antennas and Propagation 2014, 303716.
18.Liu, Y, Hao, YW, Jia, YT et al. (2014) A low RCS dual-frequency microstrip antenna with complementary split-ring resonators. Progress in Electromagnetics Research 146, 125132.
19.Li, SJ, Gao, J, Cao, XY et al. (2014) Broadband and high-isolation dual-polarized microstrip antenna with low radar cross section. IEEE Antennas and Wireless Propagation Letters 13, 14131416.
20.Rajesh, N, Malathi, K, Raju, S et al. (2017) Design of vivaldi antenna with wideband radar cross section reduction. IEEE Transactions on Antennas and Propagation 65, 21022105.
21.Genovesi, S, Costa, F and Monorchio, A (2012) A low-profile array with reduced radar cross section by using hybrid frequency selective surfaces. IEEE Transactions on Antennas and Propagation 60, 23272335.
22.Dikmen, CM, Cimen, S and Cakir, G (2014) Planar octagonal-shaped UWB antenna with reduced radar cross section. IET Microwaves, Antennas & Propagation 62, 29462953.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed