Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-22T12:58:19.917Z Has data issue: false hasContentIssue false

W-band active loads and switching front-end MMICs for radiometer calibration

Published online by Cambridge University Press:  24 May 2013

Ernst Weissbrodt*
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics, High Frequency Devices and Circuits, Freiburg, Germany
Michael Schlechtweg
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics, High Frequency Devices and Circuits, Freiburg, Germany
Oliver Ambacher
Affiliation:
Fraunhofer Institute for Applied Solid-State Physics, High Frequency Devices and Circuits, Freiburg, Germany
Ingmar Kallfass
Affiliation:
University of Stuttgart, Institute of Robust Power Semiconductor Systems, Stuttgart, Germany
*
Corresponding author: E. Weissbrodt Email: Ernst.Weissbrodt@iaf.fraunhofer.de

Abstract

A millimeter-wave monolithic integrated circuit consisting of a W-band (75–100 GHz) single-pole-five-throw (SP5T) switch and multiple internal active and passive loads for radiometer calibration was designed and manufactured in a low noise 50 nm GaAs metamorphic high electron mobility transistor technology. This highly compact and integrated front-end device for radiometer systems is capable of ultra fast switching between two identical input ports (e.g. for polarimetric applications) and three internal calibration references. It allows an accurate multi-load calibration with noise temperatures between 220 and 1750 K at the output of the device. Compared to conventional calibration methods this marks a substantial advantage in terms of size, mass, power consumption, complexity, and repetition rate.

Type
Research Papers
Copyright
Copyright © Cambridge University Press and the European Microwave Association 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1]Ulaby, F.T.; Moore, R.K.; Fung, A.K.: Microwave Remote Sensing – Active and Passive, vol. 1, Artech House, Norwood, MA, 1981.Google Scholar
[2]Advanced Internal Calibration Techniques for Post EPS Radiometers, ICT-TN-HARP-026, Final Report, issue 1, revision 0, July 2010.Google Scholar
[3]Weissbrodt, E. et al. : W-band radiometer system with switching front-end for multi-load calibration, in 2011 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS),., 24–29 July 2011, pp. 38433846.CrossRefGoogle Scholar
[4]Diebold, S.; Kallfass, I.; Weissbrodt, E.: Radiometrische Kalibrationseinrichtung mit monolithisch integriertem Mehrfachschalter, German Patent 10 2011 016 732.Google Scholar
[5]European Space Agency, Statement of Work: Calibration Loads for Radiometers, Issue 1, Rev 0, 28.08.2009.Google Scholar
[6]Frater, R.H.; Williams, D.R.: An active “Cold” noise cource. IEEE Trans. Microw. Theory Tech., 29 (4) (1981), 344347.Google Scholar
[7]Dunleavy, L.P.; Smith, M.C.; Lardizabal, S.M.; Fejzuli, A.; Roeder, R.S.: Design and characterization of FET based cold/hot noise sources, in Microwave Symp. Digest, 1997., IEEE MTT-S Int., 8–13 June 1997, vol. 3, 12931296.Google Scholar
[8]Buhles, P.M.; Lardizabal, S.M.: Design and characterization of MMIC active cold loads, in 2000 IEEE Radio Frequency Integrated Circuits (RFIC) Symp., 2000. Digest of Papers., 2000, 221225.Google Scholar
[9]Ciccognani, W.; Giannini, F.; Limiti, E.; Longhi, P.E.: Analysis, design and measurement of active low-noise terminations, in. 14th Conf. Microwave Techniques, 2008. COMITE 2008, 23–24 April 2008, 14.CrossRefGoogle Scholar
[10]Sobjaerg, S.S.; Skou, N.; Balling, J.E.: Measurements on active cold loads for radiometer calibration. IEEE Trans. Geosci. Remote Sens., 47 (9) (2009), 31343139.Google Scholar
[11]de la Jarrige, E.L.; Escotte, L.; Goutoule, J.M.; Gonneau, E.; Rayssac, J.: SiGe HBT-based active cold load for radiometer calibration. IEEE Microw. Wirel. Compon. Lett., 20 (4) (2010), 238240.Google Scholar
[12]Bredin, C. et al. : 23.8 GHz and 36.5 GHz active cold loads for radiometer calibration, in Proc. ESA/ESTEC Microwave Technology and Techniques. Workshop, May 2010.Google Scholar
[13]Weisbrodt, E.; Tessmann, A.; Schlechtweg, M.; Kallfass, I.; Ambacher, O.: Active load modules for W-band radiometer calibration, in 2012 IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS),.Google Scholar
[14]Leuther, A. et al. : Metamorphic HEMT technology for submillimeter-wave MMIC applications, in 2010 Int. Conf. Indium Phosphide & Related Materials (IPRM, May 31 2010–June 4 2010, 16.Google Scholar
[15]Leuther, A. et al. : Metamorphic HEMT technology for low-noise applications, in IEEE Int. Conf. Indium Phosphide & Related Materials (IPRM), 2009, 10–14 May 2009, 188191.Google Scholar
[16]Kallfass, I.; Diebold, S.; Massler, H.; Koch, S.; Seelmann-Eggebert, M.; Leuther, A.: Multiple-throw millimeter-wave FET switches for frequencies from 60 up to 120 GHz, in 38th European Microwave Conf. (EuMC), 2008, 27–31 Oct. 2008, 14531456.Google Scholar
[17]Seelmann-Eggebert, M.; Schaefer, F.; Leuther, A.; Massler, H.: A versatile and cryogenic mHEMT-model including noise, in 2010 IEEE MTT-S Int. Microwave Symp. Digest (MTT), 23–28 May 2010, 501504.Google Scholar
[18]Skou, N.: Microwave Radiometer Systems: Design and Analysis, Artech House, Norwood, MA, 1989.Google Scholar