Skip to main content Accessibility help

Technology developments for a large-format heterodyne MMIC array at W-band

  • Matthew Sieth (a1) (a2), Sarah Church (a1) (a2), Judy M. Lau (a1) (a2), Patricia Voll (a1) (a2), Todd Gaier (a3), Pekka Kangaslahti (a3), Lorene Samoska (a3), Mary Soria (a3), Kieran Cleary (a4), Rohit Gawande (a4), Anthony C.S. Readhead (a4), Rodrigo Reeves (a4), Andrew Harris (a5), Jeffrey Neilson (a6), Sami Tantawi (a6) and Dan Van Winkle (a6)...


We report on the development of W-band (75–110 GHz) heterodyne receiver technology for large-format astronomical arrays. The receiver system is designed to be both mass producible, so that the designs could be scaled to thousands of receiver elements, and modular. Most of the receiver functionality is integrated into compact monolithic microwave integrated circuit (MMIC) amplifier-based multichip modules. The MMIC modules include a chain of InP MMIC low-noise amplifiers, coupled-line bandpass filters, and sub-harmonic Schottky diode mixers. The receiver signals will be routed to and from the MMIC modules on a multilayer high-frequency laminate, which includes splitters, amplifiers, and frequency triplers. A prototype MMIC module has exhibited a band-averaged noise temperature of 41 K from 82 to 100 GHz and a gain of 29 dB at 15 K, which is the state-of-the-art for heterodyne multichip modules.


Corresponding author

Corresponding author: M. Sieth Email:; Phone: +00 1 650 725 9796


Hide All
[1]The CARMA website [online], 2011. Available:
[2]Sieth, M.; Lau, J. M.; Voll, P.; et al. : Development of MMIC receivers for cosmic microwave background interferometry, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conf. Series, vol. 7741, July 2010.
[3]The SEQUOIA website [online], 2011. Available:
[4]Samtleben, D: Measuring the cosmic microwave background radiation (CMBR) polarization with QUIET, Nuovo Cimento B, 122 (2007), 13531358.
[5]Camiade, M.; Dourlens, C.; Serru, V.; Savary, P.; Blanc, J.: Highly integrated and compact w-band front-end for radiometry application, in 17th Annual IEEE, Gallium Arsenide Integrated Circuit (GaAs IC) Symp., 1995. Technical Digest 1995, October 1995, 230237.
[6]Haydl, W.; et al. : Compact monolithic coplanar 94 GHz front ends, in IEEE MTT-S Int. Microwave Symp. Digest, 1997, vol. 3, June 1997, 12811284.
[7]Tessmann, A.; et al. : A compact W-band dual-channel receiver module, in IEEE MTT-S Int. Microwave Symp. Digest, 2006, June 2006, 8588.
[8]Schellenberg, J.; Chedester, R.McCoy, J.: Multi-channel receiver for an E-band FMCW imaging radar, in IEEE/MTT-S Int. Microwave Symp. 2007, June 2007, 13591362.
[9]Sieth, M.; et al. : Technology developments for a scalable heterodyne MMIC array at W-band, in 2011 41st European Microwave Conf. (EuMC), October. 2011, 527530.
[10]Kangaslahti, P.; et al. : Compact, miniature MMIC receiver modules for an MMIC array spectrograph, NASA Tech. Briefs, no. NPO-46522, December 2009, 1415.
[11]Leong, Y.-C.; and Weinreb, S.: Full band waveguide-to-microstrip probe transitions, in 1999 IEEE MTT-S Int. Microwave Symp. Digest, vol. 4, 1999, 14351438.
[12]Weinreb, S.; Lai, R.; Erickson, N.; Gaier, T.; and Wielgus, J.: W-band InP wideband MMIC LNA with 30 K noise temperature, in 1999 IEEE MTT-S Int. Microwave Symp. Digest, vol. 1, 1999, 101104.
[13]Samoska, L.; et al. : Cryogenic MMIC low noise amplifiers for W-Band and Beyond, in Int. Symp. on Space Terahertz Technology, Tucson, AZ, April 2011 [online]. Available:
[14]Parashare, C.; et al. : Millimeter-wave radiometers to correct satellite altimetry for wet-tropospheric path delay in the coastal zone, presented at the 2011 Jet Propulsion Laboratory Postdoctoral Research Day, Pasadena, CA, September 2011.
[15]Pillai, E: Coax via-A technique to reduce crosstalk and enhance impedance match at vias in high-frequency multilayer packages verified by FDTD and MoM modeling, IEEE Trans. Microw. Theory Tech, 45(10) (1997), 19811985.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed