Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-26T09:33:45.718Z Has data issue: false hasContentIssue false

Sub-THz Luneburg lens enabled wide-angle frequency-coded identification tag for passive indoor self-localization

Published online by Cambridge University Press:  13 May 2022

Petr Kadera*
Affiliation:
Department of Radio Electronics, Brno University of Technology, Technicka 12, Brno, Czech Republic
Jesús Sánchez-Pastor*
Affiliation:
Institute of Microwave Engineering and Photonics, Technische Universität Darmstadt, Merckstraße 25, Darmstadt, Germany
Lisa Schmitt
Affiliation:
Chair for Microsystems Technology, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, Germany
Martin Schüßler
Affiliation:
Institute of Microwave Engineering and Photonics, Technische Universität Darmstadt, Merckstraße 25, Darmstadt, Germany
Rolf Jakoby
Affiliation:
Institute of Microwave Engineering and Photonics, Technische Universität Darmstadt, Merckstraße 25, Darmstadt, Germany
Martin Hoffmann
Affiliation:
Chair for Microsystems Technology, Ruhr-Universität Bochum, Universitätsstraße 150, Bochum, Germany
Alejandro Jiménez-Sáez
Affiliation:
Institute of Microwave Engineering and Photonics, Technische Universität Darmstadt, Merckstraße 25, Darmstadt, Germany
Jaroslav Lacik
Affiliation:
Department of Radio Electronics, Brno University of Technology, Technicka 12, Brno, Czech Republic
*
Author for correspondence: P. Kadera, E-mail: kadera@vutbr.cz; J. Sánchez-Pastor, E-mail: jesus.sanchez@tu-darmstadt.de
Author for correspondence: P. Kadera, E-mail: kadera@vutbr.cz; J. Sánchez-Pastor, E-mail: jesus.sanchez@tu-darmstadt.de

Abstract

An earlier version of this paper was presented at the 2021 15th European Conference on Antennas and Propagation (EuCAP) and was published in its Proceedings. This paper describes a design, fabrication, and characterization of a planar frequency-coded retroreflector for indoor localization. The retroreflector is fabricated in high-resistive silicon and consists of a Luneburg lens antenna and a photonic crystal high-Q resonator reflective layer, providing ranging and identification within the same tag and bandwidth. The Luneburg lens antenna presents a measured gain of 21.63 dBi at a design frequency of 240 GHz. The frequency-coded retroreflector allows for ranging in a continuous 130 degree angular range in azimuthal plane, with a discrete but repeatable two-resonance identification over multiples of 15 degree. Its maximum measured radar cross-section is −23.48 dBsqm at a frequency of 240 GHz. The retroreflective tag set in ideal line-of-sight situation is compared to a non-line-of-sight arrangement showing the influence of a metallic rod as an obstacle on the overall tag detection parameters. Finally, the successful read-out of the retroreflective tag is discussed in unknown environments, where no a-priori information is available.

Type
EuCAP 2021 Special Issue
Copyright
Copyright © The Author(s), 2022. Published by Cambridge University Press in association with the European Microwave Association

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Petr Kadera and Jesús Sánchez-Pastor contributed equally to this work.

References

Kadera, P, Jiménez-Sáez, A, Schmitt, L, Schüßler, M, Hoffmann, M, Lacik, J and Jakoby, R (2021) Frequency coded retroreflective landmark for 230 GHz indoor self-localization systems. 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany. doi: 10.23919/EuCAP51087.2021.9410973 https://ieeexplore.ieee.org/document/9410973.CrossRefGoogle Scholar
Wei, T and Zhang, X (2015) mTrack: high-precision passive tracking using millimetre wave radios. Proceedings of the 21st Annual International Conference on Mobile Computing and Networking, Paris, France.CrossRefGoogle Scholar
Lemic, F, Martin, J, Yarp, C, Chan, D, Handziski, V, Brodersen, R, Fettweis, G, Wolisz, A and Wawrzynek, J (2016) Localization as a feature of mmWave communication, 2016 International Wireless Communications and Mobile Computing Conference (IWCMC), Paphos, Cyprus.CrossRefGoogle Scholar
Steiner, M, Grebner, T and Waldschmidt, C (2020) Millimeter-wave SAR-imaging with radar networks based on radar self-localization. IEEE Transactions on Microwave Theory and Techniques 68, 46524661.CrossRefGoogle Scholar
Dang, X, Si, X, Hao, Z and Huang, Y (2019) A novel passive indoor localization method by fusion CSI amplitude and phase information. Sensors 19, 120.CrossRefGoogle ScholarPubMed
Batra, A, El-Absi, M, Wiemeler, M, Göhringer, D and Kaiser, T (2020) Indoor THz SAR trajectory deviations effects and compensation with passive sub-mm localization system. IEEE Access 8, 177519177533.CrossRefGoogle Scholar
Mostajeran, A, Naghavi, SMH, Emadi, M, Samala, S, Ginsburg, BP, Aseeri, M and Afshari, E (2019) A high-resolution 220-GHz ultra-wideband fully integrated ISAR imaging system. IEEE Transactions on Microwave Theory and Techniques 67, 429442.CrossRefGoogle Scholar
Bourdoux, A, Barreto, AN, Liempd, B, Lima, C, Dardari, D, Belot, D, Lohan, E-S, Seco-Granados, G, Sarieddeen, H, Wymeersch, H, Suutala, J, Saloranta, J, Guillaud, M, Isomursu, M, Valkama, M, Aziz, MRK, Berkvens, R, Sanguanpuak, T, Svensson, T and Miako, Y (2020) 6 G White Paper on localization and sensing. 6Genesis – the 6G-Enabled Wireless Smart Society & Ecosystem, pp. 138.Google Scholar
El-Absi, M, Alhaj-Abbas, A, Abuelhaija, A, Zheng, F, Solbach, K and Kasier, T (2018) High-accuracy indoor localization based on chipless RFID systems at THz. IEEE Access 6, 5435554368.CrossRefGoogle Scholar
Xing, Y, Rappaport, TS and Ghosh, A (2021) Millimeter wave and sub-THz indoor radio propagation channel measurements, models, and comparisons in an office environment. IEEE Communications Letters 25, 31513155.CrossRefGoogle Scholar
Alhaj-Abbas, A, E-Absi, M, Abuelhaijay, A, Solbach, K and Kaiser, T (2019) THz passive RFID tag based on dielectric resonator linear array. 2019 Second International Workshop on Mobile Terahertz Systems (IWMTS). Bad Neuenahr, Germany.CrossRefGoogle Scholar
Jiménez-Sáez, A, Alhaj-Abbas, A, Schüßler, M, Abuelhaija, A, El-Absi, M, Sakaki, M, Samfaß, L, Benson, N, Hoffmann, M, Jakoby, R, Kaiser, T and Solbach, K (2020) Frequency-coded mm-wave tags for self-localization system using dielectric resonators. Journal of Infrared, Millimeter, and Terahertz Waves 40, 908925.CrossRefGoogle Scholar
Jiménez-Sáez, A, Schüßler, M, El-Absi, M, Alhaj-Abbas, A, Solbach, K, Kaiser, T and Jakoby, R (2020) Frequency selective surface coded retroreflectors for chipless indoor localization tag landmarks. IEEE Antennas and Wireless Propagation Letters 19, 726730.CrossRefGoogle Scholar
Solbach, K, Alhaj-Abbas, A, El-Absi, M, Abuelhaija, A and Kaiser, T (2020) Experimental demonstration of double-notch RCS spectral signature of corner reflector tag for THz self-localization system. 2020 Third International Workshop on Mobile Terahertz Systems (IWMTS), Essen, Germany.CrossRefGoogle Scholar
Jiménez-Sáez, A, Schüßler, M, Pandel, D, Benson, N and Jakoby, R (2019) 3D printed 90 GHz frequency-coded chipless wireless RFID tag. IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Bochum, Germany.CrossRefGoogle Scholar
Kadera, P, Jiménez-Sáez, A, Burmeister, T, Lacik, J, Schüßler, M and Jakoby, R (2020) Gradient-index-based frequency-coded retroreflective lenses for mm-wave indoor localization. IEEE Access 8, 212765212775.CrossRefGoogle Scholar
Bahr, RA, Adeyeye, AO, Van Rijs, S and Tentzeris, MM (2020) 3D-printed omnidirectional Luneburg lens retroreflectors for low-cost mm-wave positioning. 2020 IEEE International Conference on RFID (RFID), Orlando, Florida, USA.CrossRefGoogle Scholar
Kadera, P, Sánchez-Pastor, J, Jiménez-Sáez, A, Schüßler, M, Lacik, J and Jakoby, R (2021) QCTO Luneburg lens-based retroreflective tag landmarks for mm-wave self-localization systems. 2021 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC), Honolulu, Hawaii, USA.CrossRefGoogle Scholar
Alhaj-Abbas, A, Zantah, Y, Solbach, K and Kaiser, T (2021) Frequency-coded lens by photonic crystal resonator for mm-wave chipless RFID applications. 2021 Fourth International Workshop on Mobile Terahertz Systems (IWMTS), Essen, Germany.CrossRefGoogle Scholar
Sánchez-Pastor, J, Jiménez-Sáez, A, Schüßler, M and Jakoby, R (2021) Frequency-coded spherical retroreflector for wide-angle indoor localization tag landmarks. 2021 Fourth International Workshop on Mobile Terahertz Systems (IWMTS), Essen, Germany.CrossRefGoogle Scholar
Karpisz, T, Salski, B, Kopyt, P and Krupka, J (2019) W-band measurements of low-loss dielectrics with a Fabry-Perot open resonator. 2019 IEEE MTT-S International Microwave Symposium (IMS), Moston, MA, USA.CrossRefGoogle Scholar
Giddens, H, Andy, AS and Hao, Y (2021) Multi-material 3D printed compressed Luneburg lens for mm-wave beam steering. IEEE Antennas and Wireless Propagation Letters x, 11.Google Scholar
Kadera, P and Lacik, J (2021) Performance comparison of W-band Luneburg lens antenna: additive versus subtractive manufacturing. 2021 20th International Conference on Microwave Techniques (COMITE), Brno, Czech Republic.CrossRefGoogle Scholar
Duangrit, N, Hong, B, Burnett, AD, Akkaraekthalin, P, Robertson, ID and Somjit, N (2019) Terahertz dielectric property characterization of photopolymers for additive manufacturing. IEEE Access 7, 1233912347.CrossRefGoogle Scholar
Jiménez-Sáez, A, Schüßler, M, Krause, C, Pandel, D, Rezer, K, Vom Bogel, G, Benson, N and Jakoby, R (2019) 3D printed alumina for low-loss millimeter wave components. IEEE Access 7, 40719740724.CrossRefGoogle Scholar
Ornik, J, Sakaki, M, Koch, M, Balzer, JC and Benson, N (2020) 3D printed Al2O3 for terahertz technology. IEEE Access 9, 59865993.CrossRefGoogle Scholar
Afsar, MN and Chi, H (1994) Milimeter wave complex refractive index, complex dielectric permittivity and loss tangent of extra high purity and compensated silicon. International Journal of Infrared and Millimeter Waves 15, 11811188.CrossRefGoogle Scholar
Morgan, SP (1958) General solution of the Luneburg lens problem. Journal of Applied Physics 29, 13581368.CrossRefGoogle Scholar
Headland, D, Withayachumnankul, W, Yamada, R, Fujita, M and Nagatsuma, T (2018) Terahertz multi-beam antenna using photonic crystal waveguide and Luneburg lens. APL Photonics 3, 118.CrossRefGoogle Scholar
Hunt, J, Kundtz, N, Landy, N, Nguyen, V, Perram, T, Starr, A and Smith, DR (2011) Broadband wide angle lens implemented with dielectric metamaterials. Sensors 11, 79827991.CrossRefGoogle ScholarPubMed
Jaeheung, K and Barnes, FS (2005) Dielectric slab Rotman lens with tapered slot antenna array. IEE Proceedings – Microwaves Antennas and Propagation 152, 557562.Google Scholar
Kadera, P, Lacik, J and Arthaber, H (2021) Effective relative permittivity determination of 3D printed artificial dielectric substrates based on a cross unit cell. Radioengineering 30, 595610.CrossRefGoogle Scholar
Xue, R and Fusco, VF (2008) Patch-fed planar dielectric slab waveguide Luneburg lens. IET Microwaves, Antennas & Propagation 2, 109114.CrossRefGoogle Scholar
Roman, C, Ichim, O, Sarger, L, Vigneras, V and Mounaix, P (2004) Terahertz dielectric characterisation of polymethacrylimide rigid foam: the perfect sheer plate? Electronics Letters 40, 12.CrossRefGoogle Scholar
Jiménez-Sáez, A, Schüßler, M, Jakoby, R, Krause, C, Meyer, F and Vom Bogel, G (2018) Photonic crystal THz high-Q resonator for chipless wireless identification. 2018 First International Workshop on Mobile Terahertz Systems (IWMTS), Duisburg, Germany.CrossRefGoogle Scholar
Abdallah, MN, Sarkar, TK, Monebhurrun, V and Salazar-Palma, M (2016) Defining the starting distance for the far field of antennas operating in any environment. 2016 IEEE Conference on Antenna Measurements and Applications (CAMA 2016), Syracuse, NY, USA.CrossRefGoogle Scholar
Maestrojuan, I, Torres, V and Goñi, M (2018) Reflector and lens antennas for industrial applications in the sub-THz frequency spectrum. 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, Japan.CrossRefGoogle Scholar
Ghavidel, A, Myllymaki, S, Kokkonen, M, Tervo, N, Nelo, M and Jantunen, H (2021) A sensing demonstration of a SubTHz radio link incorporating a lens antenna. Progress in Electromagnetics Research Letters 99, 119126.CrossRefGoogle Scholar
Lee, JN, Cho, YK, Jung, JH and Hyun, SB (2020) High-gain sub-terahertz lens horn antenna with a metal guide. Electronics Letters 56, 689691.CrossRefGoogle Scholar
Konstantinidis, K, Feresidis, A, Constantinou, C, Hoare, E, Gashinova, M, Lancaster, M and Gardner, P (2017) Low-THz dielectric lens antenna with integrated waveguide feed. IEEE Transactions on Terahertz Science and Technology 7, 572581.CrossRefGoogle Scholar
Nisamol, TA, Ansha, KK and Abdulla, P (2020) Design of sub-THz beam scanning antenna using Luneburg lens for 5 G communications or beyond. Progress in Electromagnetics Research C 99, 179191.CrossRefGoogle Scholar
Myllymäki, S, Teirikangas, M and Kokkonen, M (2020) BaSrTiO3 ceramic-polymer composite material lens antennas at 220–330 GHz telecommunication applications. Electronics Letters 56, 11651167.CrossRefGoogle Scholar
Lacombe, E, Gianesello, F, Bisognin, A, Lacombe, E, Luxey, C, Bisognin, A, Titz, D, Gulan, H, Zwick, T, Costa, J and Fernandes, CA (2017) Low-cost 3D-printed 240 GHz plastic lens fed by integrated antenna in organic substrate targeting sub-THz high data rate wireless links. 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, CA, USA.CrossRefGoogle Scholar
Amarasinghe, Y, Mendis, R, Shrestha, R, Guerboukha, H, Taiber, J, Koch, M and Mittleman, DM (2021) Broadband wide-angle terahertz antenna based on the application of transformation optics to a Luneburg lens. Scientific Reports 11, 18.CrossRefGoogle ScholarPubMed
Bilitos, C, Ruiz-García, J, Sauleau, R, Martini, E, Maci, S and González-Ovejero, D (2021) Metal-only reflecting Luneburg lens design for sub-THz applications, 2021 International Symposium on Antennas and Propagation (ISAP), Taipei, Taiwan.CrossRefGoogle Scholar
Burmeister, T, Jiménez-Sáez, A, Sakaki, M, Schüßler, M, Sánchez-Pastor, J, Benson, N and Jakoby, R (2021) Chipless frequency-coded RFID tags integrating high-Q resonators and dielectric rod antennas. 2021 15th European Conference on Antennas and Propagation (EuCAP), Dusseldorf, Germany.CrossRefGoogle Scholar