Skip to main content Accessibility help

A single-sided meandered-dual-antenna structure for UHF RFID tags

  • Pouria Kamalvand (a1), Gaurav Kumar Pandey (a1) and Manoj Kumar Meshram (a1)


A meandered-dual-antenna structure is proposed for UHF radiofrequency identification (RFID) tag. It is composed of two independent antennas printed on the one side of the substrate board. One of the antennas is exclusively used for receiving and harvesting sufficient energy to the tag chip having the complex conjugate impedance of the receiving antenna. The other is for backscatter to enhance maximum differential radar cross-section with purely real input impedance, to enhancement the read range. The receiving antenna is formed by a rectangular loop and a parasitic meandered line. The rectangular loop is used as a feeding element for the meandered line. The backscattering antenna is made using a meandered dipole along with a thin rectangular strip. The input impedance of the receiving antenna is designed to be conjugate matched to the chip impedance (13.5-j110 Ω), whereas the input impedance of backscattering antenna alternatively switched to open and short circuit for modulating the backscattered field. The input impedance of receiving and backscattering antennas is measured using differential probe technique. The simulated and measured results are found in good agreement. It is also demonstrated that the read range of UHF RFID system increased considerably by using the dual-antenna structure.


Corresponding author

Corresponding author: M.K. Meshram Email:


Hide All
[1] Dong, L.W.; Ng, W.W.Y.; Yeung, D.S.; Hai-Lan, G.: A brief survey on current RFID applications, in Proc. Eighth Int. Conf. on Machine Learning and Cybernetics, Baoding, 2009, 23302335.
[2] Ajana, M.E.; Harroud, H.; Boulmalf, M.; Hamam, H.: FlexRFID: a flexible middleware for rfid application development, in IFIP Int. Conf. on Wireless and Optical Communications Networks, Cairo, 2009, 15.
[3] Lahiri, S.: RFID Source Book, Prentice-Hall PRT, United States, 2005.
[4] Lozani-Nieto, A.: RFID Design Fundamentals and Application, CRC Press Tailor and Francis Group, United States, 2011.
[5] Chen, Y.S.; Chen, S.Y.; Li, H.J.: A novel dual-antenna structure for UHF RFID tags. IEEE Trans. Antennas Propag., 59 (2011), 35003504.
[6] Tang, Z.; He, Y.; Hou, Z.; Li, B.: The effect of properties on read distance in passive backscatter RFID systems, in Int. Conf. on Network Security, Wireless Communications and Trusted Computing, Wuhan, Hubei, 2009, 120123.
[7] Mapa, L.; Aryal, G.; Chanda, K.: Effect of nanofluid on readability of RFID tags, in IEEE Int. Conf. on Electro/Information Technology (EIT), Normal, IL, 2010, 16.
[8] Want, R.: An introduction to RFID technology. IEEE Pervasive Comput., 5(1) (2006), 2533.
[9] Kim, T.; Kim, U.; Choj, J.: Design of a compact HUF RFID tag antenna using an inductively coupled parasitic element. Microw. Opt. Tech. Lett., 53 (2011), 29933000.
[10] Son, H.W.; Pyo, C.S.: Design of RFID tag antennas using an inductively coupled feed. Electron. Lett., 41 (2005), 994996.
[11] Sun, X.B.; Xie, J.; Cao, M.Y.: RFID tag antenna design based on an improved coupling source shape. IEEE Antennas Wireless Propag. Lett., 12 (2013), 532534.
[12] Chen, H.D.; Tsao, Y.H.: Broadband capacitively coupled patch antenna for RFID tag mountable on metallic objects. IEEE Antennas Wireless Propag. Lett., 9 (2010), 489492.
[13] Verma, C.; Abegaonkar, M.P.A.; Basu, .; Koul, S.K.: Effect of lossy dielectric overlays on the read-range of UHF RFID tags. IETE J. Res., 55 (2009), 6872.
[14] Kim, J.S.; Choi, W.; Choi, G.Y.; Pyo, C.S.; Chae, J.S.: Shorted microstrip patch antenna using inductively coupled feed for UHF RFID tag. ETRI J., 30 (2008), 600602.
[15] Soras, C.; Karaboikis, M.; Tsachtsiris, G.; Makios, V.: Analysis and design of an Inverted-F Antenna printed on a PCMCIA card for the 2.4 GHz ISM band. IEEE Antennas Propag. Mag., 44 (2002), 3744.
[16] Hirvonenen, H.; Pursula, P.; Jaakkola, K.; Laukkanen, K.: Planar Inverted-F Antenna for radio frequency identification. Electron. Lett., 40 (2004), 848850.
[17] Soliman, E.A.; Sallam, M.O.; Raedt, W.D.; Vandenbosch, G.A.E.: Miniaturized RFID tag antenna operating at 915 MHz. IEEE Antennas Wireless Propag. Lett., 11 (2012), 10681071.
[18] Bae, S.W.; Lee, W.; Chang, K.; Kwon, S.; Yoon, Y.J.: A small RFID TAG antenna with bandwidth-enhancement characteristics and a simple feeding structure. Microw. Opt. Tech. Lett., 50 (2008), 20272031.
[19] Marrocco, G.: The art of UHF RFID antenna design: impedance-matching and size-reduction techniques. IEEE Antennas Propag. Mag., 50 (2008), 6679.
[20] Chen, Y.S.; Chen, S.Y.; Li, H.J.: Design and optimization of a dual-antenna structure for passive RFID tags using design of experiments technique, in IEEE Int. Symp. on Antennas and Propagation (APSURSI), Spokane, 2011, 29062908.
[21] Naji, D.K.; Fyath, R.S.: Miniaturized dual-fractal antenna structure for RFID tags. Int. J. Electromagn. Appl., 3 (2013), 103119.
[22] Kamalvand, P.; Pandey, G.K.; Meshram, M.K.; Mallahzadeh, A.: A single sided dual-antenna structure for UHF RFID tag applications. Int. J. RF Microw. Comput. Aided Eng., 25 (2015), 619628.
[23] Balanis, C.A.: Antenna Theory: Analysis and Design, John Wiley & Sons, New Jersey, 2005.
[24] Nikitin, P.V.; Rao, K.V.S.; Lam, S.F.; Pillai, V.; Martinez, R.; Heinrich, H.: Power reflection coefficient analysis for complex impedances in RFID tag design. IEEE Trans. Microw. Theory Tech., 53 (2005), 27212725.
[25] Green, R.B.: The general theory of antenna scattering, Ph.D. dissertation, Department of Electric Engineering, Ohio State University, 1963.
[26] Aleksieieva, A.; Vossiek, M.: Design and optimization of amplitude- modulated microwave backscatter transponders, in German Microwave Conf., Berlin, 2010, 134137.
[27] Nikitin, P.V.; Rao, K.V.S.: Theory and measurement of backscattering from RFID tags. IEEE Antennas Propag. Mag., 48 (2006), 212218.
[28] Harrington, R.: Electromagnetic scattering by antennas. IEEE Trans. Antennas Propag., 11 (1963), 595596.
[29] Virtanen, J.; Bjorninen, T.; Ukkonen, L.; Sydanheimo, L.: Passive UHF inkjet-printed narrow-line RFID tags. IEEE Antennas Wireless Propag. Lett., 9 (2010), 440443.
[30]Higgs 4 Product Overview, Alien Technology, 2012, [Online]. Available:
[31] High Frequency structure Simulator (HFSS). Ansoft [Online]. Available:
[32] Camp, M.; Herschmann, R.; Zelder, T.; Eul, H.: Determination of the input impedance of RFID transponder antennas with novel measurement procedure using a modified on-wafer-prober. Adv. Radio Sci., 5 (2007), 115118.
[33] Kuo, S.K.; Chen, S.L.; Lin, C.T.: An accurate method for impedance measurement of RFID tag antenna. Prog. Electromagn. Res., 83 (2008), 93106.
[34] Yang, Z.Q.; Yang, T.; Liu, Y.: Analysis and design of a reduced-size marchand balun. J. Electromagn. Waves Appl., 21 (2007), 11691175.
[35] Cho, H.G.; Labadie, N.R.; Sharma, S.K.: Design of an embedded-feed type microstrip patch antenna for UHF radio frequency identification tag on metallic objects. IET Microwave Antenna Propag., 4 (2010), 12321239.
[36] Qing, X.; Goh, C.K.; Chen, Z.N.: Measurement of UHF RFID tag antenna impedance, in IEEE Int. Workshop on Antenna Technology, iWAT, Santa Monica, 2009.
[37] Koskinen, T.; Rajagopalan, H.; Samii, Y.R.: Impedance measurements of various types of balanced antennas with the differential probe method, in IEEE Int. Workshop on Antenna Technology, iWAT, Santa Monica, 2009.
[38] Palmer, K.D.; van Rooyen, A.W.: Simple broadband measurements of balanced loads using a network analyzer. IEEE Trans. Instrum. Meas., 55 (2006), 266272.
[39] Frickey, D.A.: Conversions between S, Z, Y, H, ABCD, and T parameters which are valid for complex source and load impedances. IEEE Trans. Microw. Theory Tech., 42 (1994), 205211.


A single-sided meandered-dual-antenna structure for UHF RFID tags

  • Pouria Kamalvand (a1), Gaurav Kumar Pandey (a1) and Manoj Kumar Meshram (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed