Skip to main content Accessibility help
×
Home

Novel sunflower MIMO fractal antenna with low mutual coupling and dual wide operating bands

  • Amer T. Abed (a1)

Abstract

A novel multiple-input and multiple-output (MIMO) fractal antenna excited by a coplanar waveguide was investigated in this study. A novel technique was used to improve the isolation of 20 dB between the dual radiating elements by inserting a strip line into the outer edges of the ground plane. A sunflower structure was used to configure the antenna in three steps. At each step, an additional sunflower structure was added with half the size of that used in the previous step to enhance the impedance bandwidth. The measured values of envelop correlation coefficient and total active reflection coefficient indicated that the proposed MIMO antenna has high-diversity performance between radiating elements. Wide dual operating bands of 2–2.9 and 5–10 GHz were obtained, which can support different wireless communications, such as 3G, LTE (2.6 GHz), WLAN (2.4 GHz/5 GHz), WiMAX (2.4 GHz/5GHz), ISM (2.4 GHz/5 GHz), 5G (5–6 GHz), and satellite communications (6–8 GHz). The MIMO fractal antenna with a small size achieved a maximum efficiency of 85% and a peak value gain of 6 dBi, low-channel capacity loss of 0.15–0.4 b/s/Hz, and high isolation between radiating elements is suitable for portable communication devices.

Copyright

Corresponding author

Author for correspondence: Amer T. Abed, E-mail: amer.t.abed@ieee.org

References

Hide All
1.Abed, AT (2019) Fractal and Slot Antennas for Portable Communication Devices, 1st Edn. Saarbrücken, Germany: Lab Lambert for Academic Publication.
2.Sharma, Y, Debdeep, S, Kushmanda, S and Kumar, VS (2017) Three-element MIMO antenna system with pattern and polarization diversity for WLAN applications. IEEE Antennas and Wireless Propagation Letters 16, 11631166.
3.Peristerianos, A, Argiris, T, Anastasios, GK and Theodoros, K (2016) Dual-band fractal semi-printed element antenna arrays for MIMO applications. IEEE Antennas and Wireless Propagation Letters 15, 730733.
4.Jehangir, SS and Sharawi, MS (2017) A miniaturized UWB biplanar Yagi-like MIMO antenna system. IEEE Antennas and Wireless Propagation Letters 16, 23202323.
5.Hussain, R and Sharawi, MS (2017) Annular slot-based miniaturized frequency-agile MIMO antenna system. IEEE Antennas and Wireless Propagation Letters 16, 24892492.
6.Ghalib, A and Sharawi, MS (2017) TCM analysis of defected ground structures for MIMO antenna designs in mobile terminals. IEEE Access 5, 1968019692.
7.Park, S-J, Myung-Hun, J, Kyung-Bin, B, Dong-Chan, K and Laxmikant, M (2017) Performance comparison of 2 × 2 MIMO antenna arrays with different configurations and polarizations in reverberation chamber at millimeter-waveband. Transactions on Antennas and Propagation 65, 66696678.
8.Rajkumar, S, Narayanaswamy, VS, Sharada, M and Krishnasamy, TS (2017) Heptaband swastik arm antenna for MIMO applications. IET Microwaves, Antennas & Propagation 11, 12551261.
9.Saeed Khan, M, Antonio, DC, Adnan, I, Raed, MS and Dimitris, EA (2017) Ultra-compact dual-polarised UWB MIMO antenna with meandered feeding lines. IET Microwaves, Antennas and Propagation 11, 9971002.
10.Deng, JY, Jin, YL, Luyu, Z and LiXin, G (2017) A dual-band inverted-F MIMO antenna with enhanced isolation for WLAN applications. IEEE Antennas and Wireless Propagation Letters 16, 22702273.
11.Ramachandran, A, Sumitha, M, Vivek, R and Vasudevan, K (2017) A compact triband quad-element MIMO antenna using SRR ring for high isolation. IEEE Antennas and Wireless Propagation Letters 16, 14091412.
12.Hussain, R, Ali, TA, Symon, KP and Mohammad, SS (2016) Compact 4G MIMO antenna integrated with a 5G array for current and future mobile handsets. IET Microwaves, Antennas and Propagation 11, 271279.
13.Li, G, Huiqing, Z, Zhihui, MA, Changhong, L, Rongdao, YU and Sheng, L (2014) Isolation-Improved dual-band MIMO antenna array for LTE/WiMAX Mobile terminals. IEEE Antennas and Wireless Propagation Letters 13, 11281131.
14.Mao, C-X and Chu, Q-X (2014) Compact Co-radiator UWB-MIMO antenna with dual polarization. Transactions on Antennas and Propagation 62, 44744480.
15.Toktas, A and Akdagli, A (2014) Wideband MIMO antenna with enhanced isolation for LTE, WiMAX and WLAN mobile handsets. Electronics letters 50, 723724.
16.Brzezina, G, Amir, AB, Amir, G, John, S and Alex, V (2013) Design and analysis of a low-profile directive antenna array for multi-element terminals. IET Microwaves, Antennas and Propagation 8, 611620.
17.Tripathi, S, Mohan, A and Yadav, S (2015) A compact Koch fractal UWB MIMO antenna with WLAN band-rejection. IEEE Antennas and Wireless Propagation Letters 14, 15651568.
18.Peristerianos, A, Argiris, T, Anastasios, GK, Theodoros, K and Katherine, S (2016) Dual-band fractal semi-printed element antenna arrays for MIMO applications. IEEE Antennas and Wireless Propagation Letters 15, 15731573.
19.Choukiker, YK, Sharma, SK and Behera, SK (2014) Hybrid fractal shape planar monopole antenna covering multiband wireless communications with MIMO implementation for handheld mobile devices. IEEE Transactions on Antennas and Propagation 26, 14831488.
20.Dhar, SK, Sharawi, MS, Hammi, O and Ghannouchi, FM (2016) An active integrated ultra-wideband MIMO antenna. IEEE Transactions on Antennas and Propagation 64, 15731578.
21.Kang, L, Hui, L, Xinhuai, W and Xiaowei, S (2015) Compact offset microstrip-fed MIMO antenna for band-notched UWB applications. IEEE Antennas and Wireless Propagation Letters 14, 17541758.
22.Zhang, S and Pedersen, GF (2016) Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antennas and Wireless Propagation Letters 15, 166169.
23.Zhang, Y and Wang, P (2015) Single ring two-port MIMO antenna for LTE applications. Electronics Letters 52, 9981000.
24.Wang, SM, Lih-Tyng, H, Cho-Jung, L, Chung-Yi, H and Fa-Shian, C (2016) MIMO antenna design with built-in decoupling mechanism for WLAN dual-band applications. Electronics Letters 51, 966968.
25.Yang, Y, Chu, Q and Mao, C (2016) Multiband MIMO antenna for GSM, DCS, and LTE indoor application. IEEE Antennas and Wireless Propagation Letters 15, 1573–1157.
26.Yang, L, Li, T and Yan, S (2016) Highly compact MIMO antenna system for LTE/ISM applications. International Journal of Antennas and Propagation 2015, 110.
27.Abed, AT (2018) Highly compact size serpentine-shaped multiple-input–multiple-output fractal antenna with CP diversity. IET Microwaves, Antennas and Propagation 12, 636640.
28.Hussain, R, Muhammad, UK and Mohammad, SS (2018) An integrated dual MIMO antenna system with dual-function GND-plane frequency-agile antenna. IEEE Antennas and Wireless Propagation Letters 17, 142145.
29.Sui, J and Wu, K-L (2018) Self-curing decoupling technique for two inverted-F antennas with capacitive loads. IEEE Transactions on Antennas and Propagation 66, 10931101.
30.Ding, K, Cheng, G, Dexin, Q and Qin, Y (2017) Compact broadband MIMO antenna with parasitic strip. IEEE Antennas and Wireless Propagation Letters 16, 23492353.
31.Abed, AT and Jawad, AM (2019) Compact size MIMO Amer fractal slot antenna for 3G, LTE (4G), WLAN, WiMAX, ISM and 5G communications. IEEE Access 7, 125542125551.
32.Abed, AT, Mandeep, JS and Mohamed, TI (2018) Compact fractal antenna circularly polarised radiation for Wi-Fi and WiMAX communications. IET Microwaves, Antennas and Propagation 12, 22182224.
33.Balanis, CA (2005) Antenna Theory: Analysis and Design, 3rd Edn, John Wiley & Sons, Inc., USA.
34.Sharawi, MS (2017) Current misuses and future prospects for printed multiple-input, multiple-output antenna systems. IEEE Antennas and Propagation Magazine 59, 162170.

Keywords

Novel sunflower MIMO fractal antenna with low mutual coupling and dual wide operating bands

  • Amer T. Abed (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed